1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lignin Hydrogenolysis: Phenolic Monomers from Lignin and Associated Phenolates across Plant Clades

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The chemical complexity of lignin remains a major challenge for lignin valorization into commodity and fine chemicals. A knowledge of the lignin features that favor its valorization and which plants produce such lignins can be used in plant selection or to engineer them to produce lignins that are more ideally suited for conversion. Sixteen biomass samples were compositionally surveyed by NMR and analytical degradative methods, and the yields of phenolic monomers following hydrogenolytic depolymerization were assessed to elucidate the key determinants controlling the depolymerization. Hardwoods, including those incorporating monolignol p-hydroxybenzoates into their syringyl/guaiacyl copolymeric lignins, produced high monomer yields by hydrogenolysis, whereas grasses incorporating monolignol p-coumarates and ferulates gave lower yields, on a lignin basis. Softwoods, with their more condensed guaiacyl lignins, gave the lowest yields. Lignins with a high syringyl unit content released elevated monomer levels, with a high-syringyl polar transgenic being particularly striking. Herein, we distinguish phenolic monomers resulting from the core lignin vs those from pendent phenolate esters associated with the biomass cell wall, acylating either polysaccharides or lignins. The basis for these observations is rationalized as a means to select or engineer biomass for optimal conversion to worthy phenolic monomers.

          Abstract

          Hydrogenolytic depolymerization of lignin from 16 biomass samples shows the significant impact of lignin composition on phenolic monomer yields.

          Related collections

          Most cited references144

          • Record: found
          • Abstract: found
          • Article: not found

          Lignin biosynthesis.

          The lignin biosynthetic pathway has been studied for more than a century but has undergone major revisions over the past decade. Significant progress has been made in cloning new genes by genetic and combined bioinformatics and biochemistry approaches. In vitro enzymatic assays and detailed analyses of mutants and transgenic plants altered in the expression of lignin biosynthesis genes have provided a solid basis for redrawing the monolignol biosynthetic pathway, and structural analyses have shown that plant cell walls can tolerate large variations in lignin content and structure. In some cases, the potential value for agriculture of transgenic plants with modified lignin structure has been demonstrated. This review presents a current picture of monolignol biosynthesis, polymerization, and lignin structure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading.

            In pursuit of more sustainable and competitive biorefineries, the effective valorisation of lignin is key. An alluring opportunity is the exploitation of lignin as a resource for chemicals. Three technological biorefinery aspects will determine the realisation of a successful lignin-to-chemicals valorisation chain, namely (i) lignocellulose fractionation, (ii) lignin depolymerisation, and (iii) upgrading towards targeted chemicals. This review provides a summary and perspective of the extensive research that has been devoted to each of these three interconnected biorefinery aspects, ranging from industrially well-established techniques to the latest cutting edge innovations. To navigate the reader through the overwhelming collection of literature on each topic, distinct strategies/topics were delineated and summarised in comprehensive overview figures. Upon closer inspection, conceptual principles arise that rationalise the success of certain methodologies, and more importantly, can guide future research to further expand the portfolio of promising technologies. When targeting chemicals, a key objective during the fractionation and depolymerisation stage is to minimise lignin condensation (i.e. formation of resistive carbon-carbon linkages). During fractionation, this can be achieved by either (i) preserving the (native) lignin structure or (ii) by tolerating depolymerisation of the lignin polymer but preventing condensation through chemical quenching or physical removal of reactive intermediates. The latter strategy is also commonly applied in the lignin depolymerisation stage, while an alternative approach is to augment the relative rate of depolymerisation vs. condensation by enhancing the reactivity of the lignin structure towards depolymerisation. Finally, because depolymerised lignins often consist of a complex mixture of various compounds, upgrading of the raw product mixture through convergent transformations embodies a promising approach to decrease the complexity. This particular upgrading approach is termed funneling, and includes both chemocatalytic and biological strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis

              Abstract Lignin is an abundant biopolymer with a high carbon content and high aromaticity. Despite its potential as a raw material for the fuel and chemical industries, lignin remains the most poorly utilised of the lignocellulosic biopolymers. Effective valorisation of lignin requires careful fine‐tuning of multiple “upstream” (i.e., lignin bioengineering, lignin isolation and “early‐stage catalytic conversion of lignin”) and “downstream” (i.e., lignin depolymerisation and upgrading) process stages, demanding input and understanding from a broad array of scientific disciplines. This review provides a “beginning‐to‐end” analysis of the recent advances reported in lignin valorisation. Particular emphasis is placed on the improved understanding of lignin's biosynthesis and structure, differences in structure and chemical bonding between native and technical lignins, emerging catalytic valorisation strategies, and the relationships between lignin structure and catalyst performance.
                Bookmark

                Author and article information

                Journal
                ACS Sustain Chem Eng
                ACS Sustain Chem Eng
                sc
                ascecg
                ACS Sustainable Chemistry & Engineering
                American Chemical Society
                2168-0485
                28 June 2023
                10 July 2023
                : 11
                : 27
                : 10001-10017
                Affiliations
                []Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute , Madison, Wisconsin 53726, United States
                []Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne , Lausanne 1015, Switzerland
                [§ ]Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
                Author notes
                Author information
                https://orcid.org/0000-0002-7400-5192
                https://orcid.org/0000-0002-0967-0583
                https://orcid.org/0000-0002-6093-4521
                Article
                10.1021/acssuschemeng.3c01320
                10337261
                37448721
                e219537a-7ec2-4b56-bf74-53875cdea8a3
                © 2023 The Authors. Published by American Chemical Society

                Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 05 March 2023
                : 13 June 2023
                Funding
                Funded by: Great Lakes Bioenergy Research Center, doi 10.13039/100015814;
                Award ID: DE-SC0018409
                Funded by: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, doi 10.13039/501100001711;
                Award ID: CRS115_180258
                Categories
                Research Article
                Custom metadata
                sc3c01320
                sc3c01320

                reductive catalytic fractionation (rcf),biomass,commodity chemical,lignin composition,dfrc,nmr,saponification

                Comments

                Comment on this article