2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuroprotective Action of Multitarget 7-Aminophenanthridin-6( 5H)-one Derivatives against Metal-Induced Cell Death and Oxidative Stress in SN56 Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neurodegenerative diseases have been associated with brain metal accumulation, which produces oxidative stress (OS), matrix metalloproteinases (MMPs) induction, and neuronal cell death. Several metals have been reported to downregulate both the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway and the antioxidant enzymes regulated by it, mediating OS induction and neurodegeneration. Among a recently discovered family of multitarget 7-amino-phenanthridin-6-one derivatives ( APH) the most promising compounds were tested against metal-induced cell death and OS in SN56 cells. These compounds, designed to have chelating activity, are known to inhibit some MMPs and to present antioxidant and neuroprotective effects against hydrogen peroxide treatment to SN56 neuronal cells. However, the mechanisms that mediate this protective effect are not fully understood. The obtained results show that compounds APH1, APH2, APH3, APH4, and APH5 were only able to chelate iron and copper ions among all metals studied and that APH3, APH4, and APH5 were also able to chelate mercury ion. However, none of them was able to chelate zinc, cadmium, and aluminum, thus exhibiting selective chelating activity that can be partly responsible for their neuroprotective action. Otherwise, our results indicate that their antioxidant effect is mediated through induction of the Nrf2 pathway that leads to overexpression of antioxidant enzymes. Finally, these compounds exhibited neuroprotective effects, reversing partially or completely the cytotoxic effects induced by the metals studied depending on the compound used. APH4 was the most effective and safe compound.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lead- and drug-like compounds: the rule-of-five revolution.

            Citations in CAS SciFinder to the rule-of-five (RO5) publication will exceed 1000 by year-end 2004. Trends in the RO5 literature explosion that can be discerned are the further definitions of drug-like. This topic is explored in terms of drug-like physicochemical features, drug-like structural features, a comparison of drug-like and non-drug-like in drug discovery and a discussion of how drug-like features relate to clinical success. Physicochemical features of CNS drugs and features related to CNS blood-brain transporter affinity are briefly reviewed. Recent literature on features of non-oral drugs is reviewed and how features of lead-like compounds differ from those of drug-like compounds is discussed. Most recently, partly driven by NIH roadmap initiatives, considerations have arisen as to what tool-like means in the search for chemical tools to probe biology space. All these topics frame the scope of this short review/perspective.: © 2004 Elsevier Ltd . All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties.

              Absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties play key roles in the discovery/development of drugs, pesticides, food additives, consumer products, and industrial chemicals. This information is especially useful when to conduct environmental and human hazard assessment. The most critical rate limiting step in the chemical safety assessment workflow is the availability of high quality data. This paper describes an ADMET structure-activity relationship database, abbreviated as admetSAR. It is an open source, text and structure searchable, and continually updated database that collects, curates, and manages available ADMET-associated properties data from the published literature. In admetSAR, over 210,000 ADMET annotated data points for more than 96,000 unique compounds with 45 kinds of ADMET-associated properties, proteins, species, or organisms have been carefully curated from a large number of diverse literatures. The database provides a user-friendly interface to query a specific chemical profile, using either CAS registry number, common name, or structure similarity. In addition, the database includes 22 qualitative classification and 5 quantitative regression models with highly predictive accuracy, allowing to estimate ecological/mammalian ADMET properties for novel chemicals. AdmetSAR is accessible free of charge at http://www.admetexp.org.
                Bookmark

                Author and article information

                Journal
                ACS Chem Neurosci
                ACS Chem Neurosci
                cn
                acncdm
                ACS Chemical Neuroscience
                American Chemical Society
                1948-7193
                30 August 2021
                15 September 2021
                : 12
                : 18
                : 3358-3372
                Affiliations
                []Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense , 28040 Madrid, Spain
                []Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense , 28040 Madrid, Spain
                [§ ]Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense , 28040 Madrid, Spain
                Author notes
                Author information
                https://orcid.org/0000-0002-0560-8416
                https://orcid.org/0000-0001-6937-7701
                Article
                10.1021/acschemneuro.1c00333
                8478279
                34460227
                e2e7fd34-0f49-46d7-b6c8-bbd49987d4d1
                © 2021 American Chemical Society

                Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 21 May 2021
                : 19 August 2021
                Funding
                Funded by: Universidad Complutense de Madrid, doi 10.13039/501100002911;
                Award ID: PR26/16-16B
                Funded by: Ministerio de Ciencia e Innovación, doi 10.13039/501100004837;
                Award ID: RTI2018-097662-B-I00
                Funded by: Ministerio de Ciencia e Innovación, doi 10.13039/501100004837;
                Award ID: CTQ2015-68380-R
                Categories
                Research Article
                Custom metadata
                cn1c00333
                cn1c00333

                Neurosciences
                metal cytotoxicity,neuroprotection,chelating activity,antioxidants,phenanthridones
                Neurosciences
                metal cytotoxicity, neuroprotection, chelating activity, antioxidants, phenanthridones

                Comments

                Comment on this article