0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A biopolymeric buffer layer improves device efficiency and stability in inverted organic solar cells

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We investigate a biopolymeric interfacial modifier, polyaspartic acid (PASP), which is inserted between ZnO and photoactive layers in inverted organic solar cells. The PCE of these solar cells based on PM6:Y7 is boosted from 15.7% to 16.6%.

          Abstract

          Interfacial modification is a key approach to improve performance in organic photovoltaic devices. Here, we demonstrate an environmentally friendly interfacial modifier, polyaspartic acid (PASP), which is inserted between ZnO and photoactive layers in inverted organic solar cells. The power conversion efficiency (PCE) of these solar cells based on a PM6:Y7 bulk heterojunction is boosted from 15.7% to 16.6%, due to a concurrently higher short-circuit current and fill factor. Revealed by electron spin resonance (ESR) spectroscopy coupled with charge transport measurements, the existence of an interfacial doping effect in ZnO/PASP induced by PASP was examined. An appropriate work function and surface wettability with a homogenous surface morphology are observed in ZnO/PASP electron transporting layers (ETLs). Furthermore, the optimized ETLs show universal applicability and enable better device stability. This work offers exciting prospects for using environmentally friendly materials to enrich our understanding of the interfacial properties of inverted OSCs.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Double-slit photoelectron interference in strong-field ionization of the neon dimer

          Wave-particle duality is an inherent peculiarity of the quantum world. The double-slit experiment has been frequently used for understanding different aspects of this fundamental concept. The occurrence of interference rests on the lack of which-way information and on the absence of decoherence mechanisms, which could scramble the wave fronts. Here, we report on the observation of two-center interference in the molecular-frame photoelectron momentum distribution upon ionization of the neon dimer by a strong laser field. Postselection of ions, which are measured in coincidence with electrons, allows choosing the symmetry of the residual ion, leading to observation of both, gerade and ungerade, types of interference.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Structural absorption by barbule microstructures of super black bird of paradise feathers

            Many studies have shown how pigments and internal nanostructures generate color in nature. External surface structures can also influence appearance, such as by causing multiple scattering of light (structural absorption) to produce a velvety, super black appearance. Here we show that feathers from five species of birds of paradise (Aves: Paradisaeidae) structurally absorb incident light to produce extremely low-reflectance, super black plumages. Directional reflectance of these feathers (0.05–0.31%) approaches that of man-made ultra-absorbent materials. SEM, nano-CT, and ray-tracing simulations show that super black feathers have titled arrays of highly modified barbules, which cause more multiple scattering, resulting in more structural absorption, than normal black feathers. Super black feathers have an extreme directional reflectance bias and appear darkest when viewed from the distal direction. We hypothesize that structurally absorbing, super black plumage evolved through sensory bias to enhance the perceived brilliance of adjacent color patches during courtship display.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              U1 snRNP regulates cancer cell migration and invasion in vitro

              Stimulated cells and cancer cells have widespread shortening of mRNA 3’-untranslated regions (3’UTRs) and switches to shorter mRNA isoforms due to usage of more proximal polyadenylation signals (PASs) in introns and last exons. U1 snRNP (U1), vertebrates’ most abundant non-coding (spliceosomal) small nuclear RNA, silences proximal PASs and its inhibition with antisense morpholino oligonucleotides (U1 AMO) triggers widespread premature transcription termination and mRNA shortening. Here we show that low U1 AMO doses increase cancer cells’ migration and invasion in vitro by up to 500%, whereas U1 over-expression has the opposite effect. In addition to 3’UTR length, numerous transcriptome changes that could contribute to this phenotype are observed, including alternative splicing, and mRNA expression levels of proto-oncogenes and tumor suppressors. These findings reveal an unexpected role for U1 homeostasis (available U1 relative to transcription) in oncogenic and activated cell states, and suggest U1 as a potential target for their modulation.
                Bookmark

                Author and article information

                Contributors
                Journal
                JMCCCX
                Journal of Materials Chemistry C
                J. Mater. Chem. C
                Royal Society of Chemistry (RSC)
                2050-7526
                2050-7534
                November 19 2020
                2020
                : 8
                : 44
                : 15795-15803
                Affiliations
                [1 ]CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
                [2 ]CAS Center for Excellence in Nanoscience
                [3 ]National Center for Nanoscience and Technology
                [4 ]Beijing 100190
                [5 ]P. R. China
                [6 ]School of Chemistry
                [7 ]Beijing Advanced Innovation Center for Biomedical Engineering
                [8 ]Beihang University
                [9 ]Beijing 100191
                Article
                10.1039/D0TC03048A
                e2ff1d76-22be-44c2-bba8-3e2ac1f6cc67
                © 2020

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article