7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ATP7A-Regulated Enzyme Metalation and Trafficking in the Menkes Disease Puzzle

      review-article
      1 , * , 2
      Biomedicines
      MDPI
      ATP7A, Menkes disease, symptomatology, copper enzyme, copper trafficking

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Copper is vital for numerous cellular functions affecting all tissues and organ systems in the body. The copper pump, ATP7A is critical for whole-body, cellular, and subcellular copper homeostasis, and dysfunction due to genetic defects results in Menkes disease. ATP7A dysfunction leads to copper deficiency in nervous tissue, liver, and blood but accumulation in other tissues. Site-specific cellular deficiencies of copper lead to loss of function of copper-dependent enzymes in all tissues, and the range of Menkes disease pathologies observed can now be explained in full by lack of specific copper enzymes. New pathways involving copper activated lysosomal and steroid sulfatases link patient symptoms usually related to other inborn errors of metabolism to Menkes disease. Additionally, new roles for lysyl oxidase in activation of molecules necessary for the innate immune system, and novel adapter molecules that play roles in ERGIC trafficking of brain receptors and other proteins, are emerging. We here summarize the current knowledge of the roles of copper enzyme function in Menkes disease, with a focus on ATP7A-mediated enzyme metalation in the secretory pathway. By establishing mechanistic relationships between copper-dependent cellular processes and Menkes disease symptoms in patients will not only increase understanding of copper biology but will also allow for the identification of an expanding range of copper-dependent enzymes and pathways. This will raise awareness of rare patient symptoms, and thus aid in early diagnosis of Menkes disease patients.

          Related collections

          Most cited references261

          • Record: found
          • Abstract: not found
          • Article: not found

          Copper active sites in biology.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of superoxide dismutase genes: implications in disease.

            Numerous short-lived and highly reactive oxygen species (ROS) such as superoxide (O2(.-)), hydroxyl radical, and hydrogen peroxide are continuously generated in vivo. Depending upon concentration, location, and intracellular conditions, ROS can cause toxicity or act as signaling molecules. The cellular levels of ROS are controlled by antioxidant enzymes and small-molecule antioxidants. As major antioxidant enzymes, superoxide dismutases (SODs), including copper-zinc superoxide dismutase (Cu/ZnSOD), manganese superoxide dismutase, and extracellular superoxide dismutase, play a crucial role in scavenging O2(.-). This review focuses on the regulation of the sod genes coding for these enzymes, with an emphasis on the human genes. Current knowledge about sod structure and regulation is summarized and depicted as diagrams. Studies to date on genes coding for Cu/ZnSOD (sod1) are mostly focused on alterations in the coding region and their associations with amyotrophic lateral sclerosis. Evaluation of nucleotide sequences reveals that regulatory elements of the sod2 gene reside in both the noncoding and the coding region. Changes associated with sod2 lead to alterations in expression levels as well as protein function. We also discuss the structural basis for the changes in SOD expression associated with pathological conditions and where more work is needed to establish the relationship between SODs and diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent.

              As a highly reactive substance produced in biological systems by the one-electron reduction of oxygen, superoxide (O(2) (-)) seemed a likely candidate as a bactericidal agent in leukocytes. The reduction of cytochrome c, a process in which O(2) (-) may serve as an electron donor, was found to occur when the cytochrome was incubated with leukocytes. O(2) (-) was identified as the agent responsible for the leukocyte-mediated reduction of cytochrome c by the demonstration that the reaction was abolished by superoxide dismutase, an enzyme that destroys O(2) (-), but not by boiled dismutase, albumin, or catalase. Leukocyte O(2) (-) production doubled in the presence of latex particles. The average rate of formation of O(2) (-) in the presence of these particles was 1.03 nmol/10(7) cells per 15 min. This rate, however, is only a lower limit of the true rate of O(2) (-) production, since any O(2) (-) which reacted with constituents other than cytochrome c would have gone undetected. Thus. O(2) (-) is made by leukocytes under circumstances which suggest that it may be involved in bacterial killing.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Biomedicines
                Biomedicines
                biomedicines
                Biomedicines
                MDPI
                2227-9059
                06 April 2021
                April 2021
                : 9
                : 4
                : 391
                Affiliations
                [1 ]John F. Kennedy Institute, 2600 Glostrup, Denmark
                [2 ]Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden; pernilla.wittung@ 123456chalmers.se
                Author notes
                [* ]Correspondence: ninahorn@ 123456icloud.com
                [†]

                Retired.

                Author information
                https://orcid.org/0000-0002-3735-078X
                https://orcid.org/0000-0003-1058-1964
                Article
                biomedicines-09-00391
                10.3390/biomedicines9040391
                8067471
                33917579
                e3643816-e274-4478-a539-f983d6b57ba9
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 13 March 2021
                : 02 April 2021
                Categories
                Review

                atp7a,menkes disease,symptomatology,copper enzyme,copper trafficking

                Comments

                Comment on this article