9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of increased temperature on plant communities depend on landscape location and precipitation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Global climate change is affecting and will continue to affect ecosystems worldwide. Specifically, temperature and precipitation are both expected to shift globally, and their separate and interactive effects will likely affect ecosystems differentially depending on current temperature, precipitation regimes, and other biotic and environmental factors. It is not currently understood how the effects of increasing temperature on plant communities may depend on either precipitation or where communities lie on soil moisture gradients. Such knowledge would play a crucial role in increasing our predictive ability for future effects of climate change in different systems. To this end, we conducted a multi‐factor global change experiment at two locations, differing in temperature, moisture, aspect, and plant community composition, on the same slope in the northern Mongolian steppe. The natural differences in temperature and moisture between locations served as a point of comparison for the experimental manipulations of temperature and precipitation. We conducted two separate experiments, one examining the effect of climate manipulation via open‐top chambers ( OTCs) across the two different slope locations, the other a factorial OTC by watering experiment at one of the two locations. By combining these experiments, we were able to assess how OTCs impact plant productivity and diversity across a natural and manipulated range of soil moisture. We found that warming effects were context dependent, with the greatest negative impacts of warming on diversity in the warmer, drier upper slope location and in the unwatered plots. Our study is an important step in understanding how global change will affect ecosystems across multiple scales and locations.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: not found
          • Article: not found

          The Trophic-Dynamic Aspect of Ecology

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Photosynthetic Response and Adaptation to Temperature in Higher Plants

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming

              Climate change due to greenhouse gas emissions is predicted to raise the mean global temperature by 1.0-3.5°C in the next 50-100 years. The direct and indirect effects of this potential increase in temperature on terrestrial ecosystems and ecosystem processes are likely to be complex and highly varied in time and space. The Global Change and Terrestrial Ecosystems core project of the International Geosphere-Biosphere Programme has recently launched a Network of Ecosystem Warming Studies, the goals of which are to integrate and foster research on ecosystem-level effects of rising temperature. In this paper, we use meta-analysis to synthesize data on the response of soil respiration, net N mineralization, and aboveground plant productivity to experimental ecosystem warming at 32 research sites representing four broadly defined biomes, including high (latitude or altitude) tundra, low tundra, grassland, and forest. Warming methods included electrical heat-resistance ground cables, greenhouses, vented and unvented field chambers, overhead infrared lamps, and passive night-time warming. Although results from individual sites showed considerable variation in response to warming, results from the meta-analysis showed that, across all sites and years, 2-9 years of experimental warming in the range 0.3-6.0°C significantly increased soil respiration rates by 20% (with a 95% confidence interval of 18-22%), net N mineralization rates by 46% (with a 95% confidence interval of 30-64%), and plant productivity by 19% (with a 95% confidence interval of 15-23%). The response of soil respiration to warming was generally larger in forested ecosystems compared to low tundra and grassland ecosystems, and the response of plant productivity was generally larger in low tundra ecosystems than in forest and grassland ecosystems. With the exception of aboveground plant productivity, which showed a greater positive response to warming in colder ecosystems, the magnitude of the response of these three processes to experimental warming was not generally significantly related to the geographic, climatic, or environmental variables evaluated in this analysis. This underscores the need to understand the relative importance of specific factors (such as temperature, moisture, site quality, vegetation type, successional status, land-use history, etc.) at different spatial and temporal scales, and suggests that we should be cautious in "scaling up" responses from the plot and site level to the landscape and biome level. Overall, ecosystem-warming experiments are shown to provide valuable insights on the response of terrestrial ecosystems to elevated temperature.
                Bookmark

                Author and article information

                Contributors
                jcowles@umn.edu
                Journal
                Ecol Evol
                Ecol Evol
                10.1002/(ISSN)2045-7758
                ECE3
                Ecology and Evolution
                John Wiley and Sons Inc. (Hoboken )
                2045-7758
                08 May 2018
                June 2018
                : 8
                : 11 ( doiID: 10.1002/ece3.2018.8.issue-11 )
                : 5267-5278
                Affiliations
                [ 1 ] Department of Biology University of Pennsylvania Philadelphia PA USA
                [ 2 ] Department of Ecology, Evolution & Behavior University of Minnesota Twin Cities Saint Paul MN USA
                [ 3 ] Department of Biology National University of Mongolia Ulaanbaatar Mongolia
                [ 4 ] Institute of Botany Academy of Sciences of the Czech Republic Třeboň Czech Republic
                Author notes
                [*] [* ] Correspondence

                Jane Cowles, Department of Ecology, Evolution & Behavior, University of Minnesota Twin Cities, Saint Paul, MN, USA

                Email: jcowles@ 123456umn.edu

                Author information
                http://orcid.org/0000-0002-6754-9669
                Article
                ECE33995
                10.1002/ece3.3995
                6010887
                29938051
                e3ed4a79-af57-4225-8d47-6c75e7b8f349
                © 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 08 July 2017
                : 13 February 2018
                : 25 February 2018
                Page count
                Figures: 2, Tables: 3, Pages: 12, Words: 8732
                Funding
                Funded by: National Science Foundation
                Award ID: OISE 0729786
                Categories
                Original Research
                Original Research
                Custom metadata
                2.0
                ece33995
                June 2018
                Converter:WILEY_ML3GV2_TO_NLMPMC version:version=5.4.1.1 mode:remove_FC converted:20.06.2018

                Evolutionary Biology
                biodiversity,context dependency,global change experiment,open‐top chambers,precipitation,primary productivity

                Comments

                Comment on this article