Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
11
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      Are you tired of sifting through news that doesn't interest you?
      Personalize your Karger newsletter today and get only the news that matters to you!

      Sign up

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Alternating Hypotropia with Pseudoptosis: A New Phenotype of Congenital Cranial Dysinnervation Disorder

      case-report

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Congenital cranial dysinnervation disorders, also known as CCDDs, are characterized by aberrant innervation to extraocular and facial muscles resulting in unusual forms of incomitant strabismus. Anomalous innervation to extraocular muscles can result in a wide variety of phenotypes causing various clinical conditions such as Duane syndrome, congenital fibrosis of the extraocular muscles, and Möbius syndrome. We report a case of bilateral dysinnervation disorder causing atypical ocular movements in both eyes as the patient changes fixation from one eye to the other and from right gaze to left gaze that fits with the wider diagnosis of CCDDs.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Human genetic disorders of axon guidance.

          This article reviews symptoms and signs of aberrant axon connectivity in humans, and summarizes major human genetic disorders that result, or have been proposed to result, from defective axon guidance. These include corpus callosum agenesis, L1 syndrome, Joubert syndrome and related disorders, horizontal gaze palsy with progressive scoliosis, Kallmann syndrome, albinism, congenital fibrosis of the extraocular muscles type 1, Duane retraction syndrome, and pontine tegmental cap dysplasia. Genes mutated in these disorders can encode axon growth cone ligands and receptors, downstream signaling molecules, and axon transport motors, as well as proteins without currently recognized roles in axon guidance. Advances in neuroimaging and genetic techniques have the potential to rapidly expand this field, and it is feasible that axon guidance disorders will soon be recognized as a new and significant category of human neurodevelopmental disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human disorders of axon guidance.

            Axon pathfinding is essential for the establishment of proper neuronal connections during development. Advances in neuroimaging and genomic technologies, coupled with animal modeling, are leading to the identification of an increasing number of human disorders that result from aberrant axonal wiring. In this review, we summarize the recent clinical, genetic and molecular advances with regard to three human disorders of axon guidance: Horizontal gaze palsy with progressive scoliosis, Congenital mirror movements, and Congenital fibrosis of the extraocular muscles, Type III. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recent progress in understanding congenital cranial dysinnervation disorders.

              In 2002, the new term congenital cranial dysinnervation disorder (CCDD) was proposed as a substitute for the traditional concept of congenital fibrosis of the extraocular muscles (CFEOM) based on mounting genetic, neuropathologic, and imaging evidence, suggesting that many, if not all, of these disorders result from a primary neurologic maldevelopment rather than from a muscle abnormality. This report provides an update 8 years after that original report. Review of pertinent articles published from January 2003 until June 2010 describing CCDD variants identified under PubMed MeSH terms congenital fibrosis of the extraocular muscles, congenital cranial dysinnervation disorders, individual phenotypes included under the term CCDD, and congenital ocular motility disorders. At present, a total of 7 disease genes and 10 phenotypes fall under the CCDD umbrella. A number of additional loci and phenotypes still await gene elucidation, with the anticipation that more syndromes and genes will be identified in the future. Identification of genes and their function, along with advances in neuroimaging, have expanded our understanding of the mechanisms underlying several anomalous eye movement patterns. Current evidence still supports the concept that the CCDDs are primarily due to neurogenic disturbances of brainstem or cranial nerve development. Several CCDDs are now known to have nonophthalmologic associations involving neurologic, neuroanatomic, cerebrovascular, cardiovascular, and skeletal abnormalities.
                Bookmark

                Author and article information

                Journal
                COP
                COP
                10.1159/issn.1663-2699
                Case Reports in Ophthalmology
                S. Karger AG
                1663-2699
                2018
                January – April 2018
                01 February 2018
                : 9
                : 1
                : 102-107
                Affiliations
                [_a] aUniversity of Toronto, Toronto, Ontario, Canada
                [_b] bMcMaster University, Waterloo Regional Campus, Kitchener, Ontario, Canada
                [_c] cIvey Eye Institute, University of Western Ontario, London, Ontario, Canada
                Author notes
                *Inas Makar, Ivey Eye Institute, St. Joseph’s Hospital, 268 Grosvenor Street, London, ON N6A 4V2 (Canada), E-Mail Inas.Makar@lhsc.on.ca
                Article
                485832 PMC5892332 Case Rep Ophthalmol 2018;9:96–101
                10.1159/000485832
                PMC5892332
                29643789
                e3f20295-3014-46fe-89be-58b09ff77590
                © 2018 The Author(s). Published by S. Karger AG, Basel

                This article is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC). Usage and distribution for commercial purposes requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 04 August 2017
                : 29 November 2017
                Page count
                Figures: 3, Pages: 6
                Categories
                Case Report

                Vision sciences,Ophthalmology & Optometry,Pathology
                Ocular synkinesis,Cranial nerve miswiring,Congenital cranial dysinnervation disorders

                Comments

                Comment on this article