12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Maltitol: Analytical Determination Methods, Applications in the Food Industry, Metabolism and Health Impacts

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bulk sweetener maltitol belongs to the polyols family and there have been several dietary applications in the past few years, during which the food industry has used it in many food products: bakery and dairy products, chocolate, sweets. This review paper addresses and discusses in detail the most relevant aspects concerning the analytical methods employed to determine maltitol’s food safety and industry applications, its metabolism and its impacts on human health. According to our main research outcome, we can assume that maltitol at lower doses poses little risk to humans and is a good alternative to using sucrose. However, it causes diarrhoea and foetus complications at high doses. Regarding its determination, high-performance liquid chromatography proved the primary method in various food matrices. The future role of maltitol in the food industry is likely to become more relevant as processors seek alternative sweeteners in product formulation without compromising health.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Effects of Sweeteners on the Gut Microbiota: A Review of Experimental Studies and Clinical Trials

          ABSTRACT The consumption of sugar-free foods is growing because of their low-calorie content and the health concerns about products with high sugar content. Sweeteners that are frequently several hundred thousand times sweeter than sucrose are being consumed as sugar substitutes. Although nonnutritive sweeteners (NNSs) are considered safe and well tolerated, their effects on glucose intolerance, the activation of sweet taste receptors, and alterations to the composition of the intestinal microbiota are controversial. This review critically discusses the evidence supporting the effects of NNSs, both synthetic sweeteners (acesulfame K, aspartame, cyclamate, saccharin, neotame, advantame, and sucralose) and natural sweeteners (NSs; thaumatin, steviol glucosides, monellin, neohesperidin dihydrochalcone, and glycyrrhizin) and nutritive sweeteners (polyols or sugar alcohols) on the composition of microbiota in the human gut. So far, only saccharin and sucralose (NNSs) and stevia (NS) change the composition of the gut microbiota. By definition, a prebiotic is a nondigestible food ingredient, but some polyols can be absorbed, at least partially, in the small intestine by passive diffusion: however, a number of them, such as isomaltose, maltitol, lactitol, and xylitol, can reach the large bowel and increase the numbers of bifidobacteria in humans. Further research on the effects of sweeteners on the composition of the human gut microbiome is necessary.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: meta-analysis of seven long-term studies.

            To assess if treatment with the alpha-glucosidase inhibitor acarbose can reduce cardiovascular events in type 2 diabetic patients. This meta-analysis included seven randomized, double-blind, placebo-controlled acarbose studies with a minimum treatment duration of 52 weeks. Type 2 diabetic patients valid for safety were randomized to either acarbose (n=1248) or placebo (n=932). The primary outcome measure was the time to develop a cardiovascular event. Primary analysis was conducted using Cox regression analysis. The effect of acarbose on metabolic parameters was also investigated. Acarbose therapy showed favourable trends towards risk reduction for all selected cardiovascular event categories. The treatment significantly reduced the risk for "myocardial infarction" (hazards ratio=0.36 [95% Cl 0.16-0.80], P=0.0120) and "any cardiovascular event" (0.65 [95% Cl 0.48-0.88], P=0.0061). Glycaemic control, triglyceride levels, body weight and systolic blood pressure also improved significantly during acarbose treatment. Intervention with acarbose can prevent myocardial infarction and cardiovascular disease in type 2 diabetic patients while most of them are already on intensive concomitant cardiovascular medication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties.

              Abstract Polyols are hydrogenated carbohydrates used as sugar replacers. Interest now arises because of their multiple potential health benefits. They are non-cariogenic (sugar-free tooth-friendly), low-glycaemic (potentially helpful in diabetes and cardiovascular disease), low-energy and low-insulinaemic (potentially helpful in obesity), low-digestible (potentially helpful in the colon), osmotic (colon-hydrating, laxative and purifying) carbohydrates. Such potential health benefits are reviewed. A major focus here is the glycaemic index (GI) of polyols as regards the health implications of low-GI foods. The literature on glycaemia and insulinaemia after polyol ingestion was analysed and expressed in the GI and insulinaemic index (II) modes, which yielded the values: erythritol 0, 2; xylitol 13, 11; sorbitol 9, 11; mannitol 0, 0; maltitol 35, 27; isomalt 9, 6; lactitol 6, 4; polyglycitol 39, 23. These values are all much lower than sucrose 65, 43 or glucose 100, 100. GI values on replacing sucrose were independent of both intake (up to 50 g) and the state of carbohydrate metabolism (normal, type 1 with artificial pancreas and type 2 diabetes mellitus). The assignment of foods and polyols to GI bands is considered, these being: high (> 70), intermediate (> 55-70), low (> 40-55), and very low (< 40) including non-glycaemic; the last aims to target particularly low-GI-carbohydrate-based foods. Polyols ranged from low to very low GI. An examination was made of the dietary factors affecting the GI of polyols and foods. Polyol and other food GI values could be used to estimate the GI of food mixtures containing polyols without underestimation. Among foods and polyols a departure of II from GI was observed due to fat elevating II and reducing GI. Fat exerted an additional negative influence on GI, presumed due to reduced rates of gastric emptying. Among the foods examined, the interaction was prominent with snack foods; this potentially damaging insulinaemia could be reduced using polyols. Improved glycated haemoglobin as a marker of glycaemic control was found in a 12-week study of type 2 diabetes mellitus patients consuming polyol, adding to other studies showing improved glucose control on ingestion of low-GI carbohydrate. In general some improvement in long-term glycaemic control was discernible on reducing the glycaemic load via GI by as little as 15-20 g daily. Similar amounts of polyols are normally acceptable. Although polyols are not essential nutrients, they contribute to clinically recognised maintenance of a healthy colonic environment and function. A role for polyols and polyol foods to hydrate the colonic contents and aid laxation is now recognised by physicians. Polyols favour saccharolytic anaerobes and aciduric organisms in the colon, purifying the colon of endotoxic, putrefying and pathological organisms, which has clinical relevance. Polyols also contribute towards short-chain organic acid formation for a healthy colonic epithelium. Polyol tooth-friendliness and reduced energy values are affirmed and add to the potential benefits. In regard to gastrointestinal tolerance, food scientists and nutritionists, physicians, and dentists have in their independent professional capacities each now described sensible approaches to the use and consumption of polyols.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                20 July 2020
                July 2020
                : 17
                : 14
                : 5227
                Affiliations
                [1 ]Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
                [2 ]Northern Institute for Environmental and Minority Law (NIEM), Arctic Centre, University of Lapland, 96101 Rovaniemi, Lapland, Finland
                [3 ]Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
                [4 ]REQUIMTE/LAQV, University of Oporto, 4051-401 Porto, Portugal
                [5 ]Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
                [6 ]Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
                Author notes
                Author information
                https://orcid.org/0000-0002-6043-819X
                https://orcid.org/0000-0002-5286-2249
                Article
                ijerph-17-05227
                10.3390/ijerph17145227
                7400077
                32698373
                e471261e-d4cc-4594-b4ed-7e6fda9ff413
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 22 May 2020
                : 14 July 2020
                Categories
                Review

                Public health
                food additives,food industry,food safety,health impacts,maltitol,metabolism,sweeteners
                Public health
                food additives, food industry, food safety, health impacts, maltitol, metabolism, sweeteners

                Comments

                Comment on this article