48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanism of Ghrelin-Induced Gastric Contractions in Suncus murinus (House Musk Shrew): Involvement of Intrinsic Primary Afferent Neurons

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Here, we have reported that motilin can induce contractions in a dose-dependent manner in isolated Suncus murinus (house musk shrew) stomach. We have also shown that after pretreatment with a low dose of motilin (10 −10 M), ghrelin also induces gastric contractions at levels of 10 −10 M to 10 −7 M. However, the neural mechanism of ghrelin action in the stomach has not been fully revealed. In the present study, we studied the mechanism of ghrelin-induced contraction in vitro using a pharmacological method. The responses to ghrelin in the stomach were almost completely abolished by hexamethonium and were significantly suppressed by the administration of phentolamine, prazosin, ondansetron, and naloxone. Additionally, N-nitro- l-arginine methylester significantly potentiated the contractions. Importantly, the mucosa is essential for ghrelin-induced, but not motilin-induced, gastric contractions. To evaluate the involvement of intrinsic primary afferent neurons (IPANs), which are multiaxonal neurons that pass signals from the mucosa to the myenteric plexus, we examined the effect of the IPAN-related pathway on ghrelin-induced contractions and found that pretreatment with adenosine and tachykinergic receptor 3 antagonists (SR142801) significantly eliminated the contractions and GR113808 (5- hydroxytryptamine receptor 4 antagonist) almost completely eliminated it. The results indicate that ghrelin stimulates and modulates suncus gastric contractions through cholinergic, adrenergic, serotonergic, opioidergic neurons and nitric oxide synthases in the myenteric plexus. The mucosa is also important for ghrelin-induced gastric contractions, and IPANs may be the important interneurons that pass the signal from the mucosa to the myenteric plexus.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin.

          : Ghrelin, an endogenous ligand for growth hormone secretagogue receptor, was recently identified in the rat stomach. We examined the effects of the gastric peptide ghrelin on energy balance in association with leptin and vagal nerve activity. : Food intake, oxygen consumption, gastric emptying, and hypothalamic neuropeptide Y (NPY) messenger RNA expression were measured after intra-third cerebroventricular or intraperitoneal injections of ghrelin in mice. The gastric vagal nerve activity was recorded after intravenous administration in rats. Gastric ghrelin gene expression was assessed by Northern blot analysis. Repeated coadministration of ghrelin and interleukin (IL)-1 beta was continued for 5 days. : Ghrelin exhibited gastroprokinetic activity with structural resemblance to motilin and potent orexigenic activity through action on the hypothalamic neuropeptide Y (NPY) and Y(1) receptor, which was lost after vagotomy. Ghrelin decreased gastric vagal afferent discharge in contrast to other anorexigenic peptides that increased the activity. Ghrelin gene expression in the stomach was increased by fasting and in ob/ob mice, and was decreased by administration of leptin and IL-1 beta. Peripherally administered ghrelin blocked IL-1 beta-induced anorexia and produced positive energy balance by promoting food intake and decreasing energy expenditure. : Ghrelin, which is negatively regulated by leptin and IL-1 beta, is secreted by the stomach and increases arcuate NPY expression, which in turn acts through Y(1) receptors to increase food intake and decrease energy expenditure. Gastric peptide ghrelin may thus function as part of the orexigenic pathway downstream from leptin and is a potential therapeutic target not only for obesity but also for anorexia and cachexia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Using genomic data to unravel the root of the placental mammal phylogeny.

            The phylogeny of placental mammals is a critical framework for choosing future genome sequencing targets and for resolving the ancestral mammalian genome at the nucleotide level. Despite considerable recent progress defining superordinal relationships, several branches remain poorly resolved, including the root of the placental tree. Here we analyzed the genome sequence assemblies of human, armadillo, elephant, and opossum to identify informative coding indels that would serve as rare genomic changes to infer early events in placental mammal phylogeny. We also expanded our species sampling by including sequence data from >30 ongoing genome projects, followed by PCR and sequencing validation of each indel in additional taxa. Our data provide support for a sister-group relationship between Afrotheria and Xenarthra (the Atlantogenata hypothesis), which is in turn the sister-taxon to Boreoeutheria. We failed to recover any indels in support of a basal position for Xenarthra (Epitheria), which is suggested by morphology and a recent retroposon analysis, or a hypothesis with Afrotheria basal (Exafricoplacentalia), which is favored by phylogenetic analysis of large nuclear gene data sets. In addition, we identified two retroposon insertions that also support Atlantogenata and none for the alternative hypotheses. A revised molecular timescale based on these phylogenetic inferences suggests Afrotheria and Xenarthra diverged from other placental mammals approximately 103 (95-114) million years ago. We discuss the impacts of this topology on earlier phylogenetic reconstructions and repeat-based inferences of phylogeny.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ghrelin stimulates gastric acid secretion and motility in rats.

              Ghrelin, a novel growth-hormone-releasing peptide, was discovered in rat and human stomach tissues. However, its physiological and pharmacological actions in the gastric function remain to be determined. Therefore, we studied the effects of rat ghrelin on gastric functions in urethane-anesthetized rats. Intravenous administrations of rat ghrelin at 0.8 to 20 microgram/kg dose-dependently increased not only gastric acid secretion measured by a lumen-perfused method, but also gastric motility measured by a miniature balloon method. The maximum response in gastric acid secretion was almost equipotent to that of histamine (3 mg/kg, i.v.). Moreover, these actions were abolished by pretreatment with either atropine (1 mg/kg, s.c.) or bilateral cervical vagotomy, but not by a histamine H(2)-receptor antagonist (famotidine, 1 mg/kg, s.c.). These results taken together suggest that ghrelin may play a physiological role in the vagal control of gastric function in rats. Copyright 2000 Academic Press.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                2 April 2013
                : 8
                : 4
                : e60365
                Affiliations
                [1 ]Area of Regulatory Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
                [2 ]Laboratory of Animal Management and Resources, Department of Zoology, Okayama University of Science, Okayama, Japan
                Goethe University Frankfurt, Germany
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TS IS. Performed the experiments: AM SA CG. Analyzed the data: AM TS. Contributed reagents/materials/analysis tools: SO. Wrote the paper: AM.

                Article
                PONE-D-13-00135
                10.1371/journal.pone.0060365
                3614873
                23565235
                e4877d8f-b99b-4abd-ac17-df912a7492e4
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 December 2012
                : 26 February 2013
                Page count
                Pages: 10
                Funding
                This work was supported by a Grant-in-Aid for the Scientific Research (C) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) KAKENHI (grant number 21590785). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Digestive System
                Digestive Physiology
                Neurological System
                Neural Pathways
                Molecular Cell Biology
                Signal Transduction
                Membrane Receptor Signaling
                Neurotransmitter Receptor Signaling
                Neuroscience
                Neurochemistry
                Neurochemicals
                Neurotransmitters
                Neurotransmitters
                Medicine
                Endocrinology
                Endocrine Physiology
                Neuroendocrinology
                Gastroenterology and Hepatology
                Stomach and Duodenum

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_

                Similar content262

                Cited by5

                Most referenced authors382