13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Conservation of Epigenetic Regulation, ORC Binding and Developmental Timing of DNA Replication Origins in the Genus Drosophila

      , ,
      Genetics
      Genetics Society of America

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is much interest in how DNA replication origins are regulated so that the genome is completely duplicated each cell division cycle and in how the division of cells is spatially and temporally integrated with development. In the Drosophila melanogaster ovary, the cell cycle of somatic follicle cells is modified at precise times in oogenesis. Follicle cells first proliferate via a canonical mitotic division cycle and then enter an endocycle, resulting in their polyploidization. They subsequently enter a specialized amplification phase during which only a few, select origins repeatedly initiate DNA replication, resulting in gene copy number increases at several loci important for eggshell synthesis. Here we investigate the importance of these modified cell cycles for oogenesis by determining whether they have been conserved in evolution. We find that their developmental timing has been strictly conserved among Drosophila species that have been separate for approximately 40 million years of evolution and provide evidence that additional gene loci may be amplified in some species. Further, we find that the acetylation of nucleosomes and Orc2 protein binding at active amplification origins is conserved. Conservation of DNA subsequences within amplification origins from the 12 recently sequenced Drosophila species genomes implicates members of a Myb protein complex in recruiting acetylases to the origin. Our findings suggest that conserved developmental mechanisms integrate egg chamber morphogenesis with cell cycle modifications and the epigenetic regulation of origins.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Histone acetylation regulates the time of replication origin firing.

          The temporal firing of replication origins throughout S phase in yeast depends on unknown determinants within the adjacent chromosomal environment. We demonstrate here that the state of histone acetylation of surrounding chromatin is an important regulator of temporal firing. Deletion of RPD3 histone deacetylase causes earlier origin firing and concurrent binding of the replication factor Cdc45p to origins. In addition, increased acetylation of histones in the vicinity of the late origin ARS1412 by recruitment of the histone acetyltransferase Gcn5p causes ARS1412 alone to fire earlier. These data indicate that histone acetylation is a direct determinant of the timing of origin firing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Native E2F/RBF complexes contain Myb-interacting proteins and repress transcription of developmentally controlled E2F target genes.

            The retinoblastoma tumor suppressor protein (pRb) regulates gene transcription by binding E2F transcription factors. pRb can recruit several repressor complexes to E2F bound promoters; however, native pRb repressor complexes have not been isolated. We have purified E2F/RBF repressor complexes from Drosophila embryo extracts and characterized their roles in E2F regulation. These complexes contain RBF, E2F, and Myb-interacting proteins that have previously been shown to control developmentally regulated patterns of DNA replication in follicle cells. The complexes localize to transcriptionally silent sites on polytene chromosomes and mediate stable repression of a specific set of E2F targets that have sex- and differentiation-specific expression patterns. Strikingly, seven of eight complex subunits are structurally and functionally related to C. elegans synMuv class B genes, which cooperate to control vulval differentiation in the worm. These results reveal an extensive evolutionary conservation of specific pRb repressor complexes that physically combine subunits with established roles in the regulation of transcription, DNA replication, and chromatin structure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of a Drosophila Myb-E2F2/RBF transcriptional repressor complex.

              The Drosophila Myb complex has roles in both activating and repressing developmentally regulated DNA replication. To further understand biochemically the functions of the Myb complex, we fractionated Drosophila embryo extracts relying upon affinity chromatography. We found that E2F2, DP, RBF1, RBF2, and the Drosophila homolog of LIN-52, a class B synthetic multivulva (synMuv) protein, copurify with the Myb complex components to form the Myb-MuvB complex. In addition, we found that the transcriptional repressor protein, lethal (3) malignant brain tumor protein, L(3)MBT, and the histone deacetylase, Rpd3, associated with the Myb-MuvB complex. Members of the Myb-MuvB complex were localized to promoters and were shown to corepress transcription of developmentally regulated genes. These and other data now link together the Myb and E2F2 complexes in higher-order assembly to specific chromosomal sites for the regulation of transcription.
                Bookmark

                Author and article information

                Journal
                Genetics
                Genetics
                Genetics Society of America
                0016-6731
                1943-2631
                November 26 2007
                November 2007
                November 2007
                November 26 2007
                : 177
                : 3
                : 1291-1301
                Article
                10.1534/genetics.107.070862
                2147948
                18039868
                e4d1d771-34f2-4a22-8b95-45b3524a110a
                © 2007
                History

                Comments

                Comment on this article