35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Data-Derived Modeling Characterizes Plasticity of MAPK Signaling in Melanoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The majority of melanomas have been shown to harbor somatic mutations in the RAS-RAF-MEK-MAPK and PI3K-AKT pathways, which play a major role in regulation of proliferation and survival. The prevalence of these mutations makes these kinase signal transduction pathways an attractive target for cancer therapy. However, tumors have generally shown adaptive resistance to treatment. This adaptation is achieved in melanoma through its ability to undergo neovascularization, migration and rearrangement of signaling pathways. To understand the dynamic, nonlinear behavior of signaling pathways in cancer, several computational modeling approaches have been suggested. Most of those models require that the pathway topology remains constant over the entire observation period. However, changes in topology might underlie adaptive behavior to drug treatment. To study signaling rearrangements, here we present a new approach based on Fuzzy Logic (FL) that predicts changes in network architecture over time. This adaptive modeling approach was used to investigate pathway dynamics in a newly acquired experimental dataset describing total and phosphorylated protein signaling over four days in A375 melanoma cell line exposed to different kinase inhibitors. First, a generalized strategy was established to implement a parameter-reduced FL model encoding non-linear activity of a signaling network in response to perturbation. Next, a literature-based topology was generated and parameters of the FL model were derived from the full experimental dataset. Subsequently, the temporal evolution of model performance was evaluated by leaving time-defined data points out of training. Emerging discrepancies between model predictions and experimental data at specific time points allowed the characterization of potential network rearrangement. We demonstrate that this adaptive FL modeling approach helps to enhance our mechanistic understanding of the molecular plasticity of melanoma.

          Author Summary

          Signal transduction pathways can be described as static routes, transmitting extrinsic signals to the nucleus to induce a transcriptional response. In contrast to this reductionist view, the emerging paradigm is that signaling networks undergo dynamic crosstalk, both in disease and physiological conditions. To understand complex pathway behavior, it is necessary to develop methods to identify pathway interactions that are active as a consequence of stimuli and, importantly, to describe their evolution in time. To that end, we developed a method relying on prior knowledge networks in order to predict signaling crosstalk evolution, in response to perturbation and over time. The challenge we addressed was to establish a method dependent on information related to the topology of reported interactions, and not their mechanistic characteristics, and at the same time complex enough to reproduce the behavior of the signaling intermediates. The work presented here demonstrates that such an approach can be used to predict mechanisms that melanoma uses to rearrange its signaling and maintain its abnormal proliferation upon treatment.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation.

          C Marshall (1995)
          A number of different intracellular signaling pathways have been shown to be activated by receptor tyrosine kinases. These activation events include the phosphoinositide 3-kinase, 70 kDa S6 kinase, mitogen-activated protein kinase (MAPK), phospholipase C-gamma, and the Jak/STAT pathways. The precise role of each of these pathways in cell signaling remains to be resolved, but studies on the differentiation of mammalian PC12 cells in tissue culture and the genetics of cell fate determination in Drosophila and Caenorhabditis suggest that the extracellular signal-regulated kinase (ERK-regulated) MAPK pathway may be sufficient for these cellular responses. Experiments with PC12 cells also suggest that the duration of ERK activation is critical for cell signaling decisions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K.

            BRAF is an attractive target for melanoma drug development. However, resistance to BRAF inhibitors is a significant clinical challenge. We describe a model of resistance to BRAF inhibitors developed by chronic treatment of BRAF(V)⁶⁰⁰(E) melanoma cells with the BRAF inhibitor SB-590885; these cells are cross-resistant to other BRAF-selective inhibitors. Resistance involves flexible switching among the three RAF isoforms, underscoring the ability of melanoma cells to adapt to pharmacological challenges. IGF-1R/PI3K signaling was enhanced in resistant melanomas, and combined treatment with IGF-1R/PI3K and MEK inhibitors induced death of BRAF inhibitor-resistant cells. Increased IGF-1R and pAKT levels in a post-relapse human tumor sample are consistent with a role for IGF-1R/PI3K-dependent survival in the development of resistance to BRAF inhibitors. Copyright © 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Defining network topologies that can achieve biochemical adaptation.

              Many signaling systems show adaptation-the ability to reset themselves after responding to a stimulus. We computationally searched all possible three-node enzyme network topologies to identify those that could perform adaptation. Only two major core topologies emerge as robust solutions: a negative feedback loop with a buffering node and an incoherent feedforward loop with a proportioner node. Minimal circuits containing these topologies are, within proper regions of parameter space, sufficient to achieve adaptation. More complex circuits that robustly perform adaptation all contain at least one of these topologies at their core. This analysis yields a design table highlighting a finite set of adaptive circuits. Despite the diversity of possible biochemical networks, it may be common to find that only a finite set of core topologies can execute a particular function. These design rules provide a framework for functionally classifying complex natural networks and a manual for engineering networks. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                September 2014
                4 September 2014
                : 10
                : 9
                : e1003795
                Affiliations
                [1 ]Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
                [2 ]Institute of Pharmacy and Molecular Biotechnology (IPMB), Bioquant, Heidelberg University, Heidelberg, Germany
                [3 ]Lysosomal Systems Biology, German Cancer Research Center (DKFZ), Bioquant, Heidelberg, Germany
                [4 ]Institute of Transplant Immunology, IFB-Tx, Hannover Medical School, Hannover, Germany
                [5 ]German Center for Infectious Diseases (DZIF) TTU-IICH, Hannover, Germany
                [6 ]Systems Biology of Cell Death Mechanisms, German Cancer Research Center (DKFZ), Bioquant, Heidelberg, Germany
                [7 ]Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
                National University of Singapore, Singapore
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SM CSF NRB RE. Performed the experiments: SM. Analyzed the data: MBF NRB. Contributed reagents/materials/analysis tools: CSF NRB RE. Wrote the paper: MBF NRB RE. Developed the modeling method: MBF.

                [¤]

                Current address: European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, United Kingdom

                Article
                PCOMPBIOL-D-14-00129
                10.1371/journal.pcbi.1003795
                4154640
                25188314
                e4efee36-5bcc-4189-8a6c-b212998c634a
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 22 January 2014
                : 24 June 2014
                Page count
                Pages: 18
                Funding
                This work was supported through SBCancer within the Helmholtz Alliance on Systems Biology funded by the Initiative and Networking Fund of the Helmholtz Association (MBF, NRB, RE), the HGF Helmholtz Alliance Immunotherapy of Cancer (SM and CSF) and the German Research Foundation TRR77 project A3 (CSF). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and life sciences
                Cell biology
                Cell Processes
                Cell Growth
                Signal transduction
                Cell signaling
                Membrane Receptor Signaling
                Hormone Receptor Signaling
                Signaling cascades
                MAPK signaling cascades
                Crosstalk (Biology)
                Mechanisms of Signal Transduction
                Feedback Regulation
                Signal Initiation
                Phosphoinositide Signal Transduction
                Computational Biology
                Genetics
                Cancer Genetics
                Genetics of Disease
                Systems Biology
                Theoretical Biology
                Computer and Information Sciences
                Computing Methods
                Fuzzy Logic
                Network Analysis
                Signaling Networks
                Medicine and Health Sciences
                Oncology
                Cancers and Neoplasms
                Melanomas
                Cancer Treatment

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article