27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report on the direct observation of spin-exchanging interactions in a two-orbital SU(N)-symmetric quantum gas of ytterbium in an optical lattice. The two orbital states are represented by two different (meta-)stable electronic configurations of fermionic Yb-173. A strong spin-exchange between particles in the two separate orbitals is mediated by the contact interaction between atoms, which we characterize by clock shift spectroscopy in a 3D optical lattice. We find the system to be SU(N)-symmetric within our measurement precision and characterize all relevant scattering channels for atom pairs in combinations of the ground and the excited state. Elastic scattering between the orbitals is dominated by the antisymmetric channel, which leads to the strong spin-exchange coupling. The exchange process is directly observed, by characterizing the dynamic equilibration of spin imbalances between two large ensembles in the two orbital states, as well as indirectly in atom pairs via interaction shift spectroscopy in a 3D lattice. The realization of a stable SU(N)-symmetric two-orbital Hubbard Hamiltonian opens the route towards experimental quantum simulation of condensed-matter models based on orbital interactions, such as the Kondo lattice model.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Quantum Criticality in Heavy Fermion Metals

          Quantum criticality describes the collective fluctuations of matter undergoing a second-order phase transition at zero temperature. Heavy fermion metals have in recent years emerged as prototypical systems to study quantum critical points. There have been considerable efforts, both experimental and theoretical, which use these magnetic systems to address problems that are central to the broad understanding of strongly correlated quantum matter. Here, we summarize some of the basic issues, including i) the extent to which the quantum criticality in heavy fermion metals goes beyond the standard theory of order-parameter fluctuations, ii) the nature of the Kondo effect in the quantum critical regime, iii) the non-Fermi liquid phenomena that accompany quantum criticality, and iv) the interplay between quantum criticality and unconventional superconductivity.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Spinor Bose gases: Symmetries, magnetism, and quantum dynamics

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              An Optical Lattice Clock with Accuracy and Stability at the \(10^{-18}\) Level

              , , (2013)
              The exquisite control exhibited over quantum states of individual particles has revolutionized the field of precision measurement, as exemplified by the most accurate atomic clock realized in single trapped ions. Whereas many-atom lattice clocks have shown advantages in measurement precision over trapped-ion clocks, their accuracy has remained 20 times worse. Here we demonstrate, for the first time, that a many-atom system achieves accuracy (6x10^{-18}) better than a single ion-based clock, with vastly reduced averaging times (3000 s). This is the first time a single clock has achieved the best performance in all three key ingredients necessary for consideration as a primary standard - stability, reproducibility, and accuracy. This work paves the way for future experiments to integrate many-body quantum state engineering into the frontiers of quantum metrology, creating exciting opportunities to advance precision beyond the standard quantum limit. Improved frequency standards will have impact to a wide range of fields from the realization of the SI units, the development of quantum sensors, to precision tests of the fundamental laws of nature.
                Bookmark

                Author and article information

                Journal
                2014-03-19
                2015-05-21
                Article
                10.1038/nphys3061
                1403.4761
                e4f0e8df-e156-439b-89e6-c61878d15e42

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Nature Phys. 10, 779-784 (2014)
                Correction: In the original version of this preprint the assignment of states with symmetric electronic wavefunction (|eg+>) and with antisymmetric electronic wavefunction (|eg->) to the observed spectral lines was inverted. This has been corrected in the current version. The results of the paper remain unchanged, with the exchange coupling being inverted to a ferromagnetic exchange
                cond-mat.quant-gas physics.atom-ph

                Quantum gases & Cold atoms,Atomic & Molecular physics
                Quantum gases & Cold atoms, Atomic & Molecular physics

                Comments

                Comment on this article