10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Novel SHP-1 inhibitors tyrosine phosphatase inhibitor-1 and analogs with preclinical anti-tumor activities as tolerated oral agents.

      The Journal of Immunology Author Choice
      Administration, Oral, Animals, Antineoplastic Agents, administration & dosage, Blotting, Western, Drug Screening Assays, Antitumor, Female, Humans, Jurkat Cells, Lymphocyte Activation, drug effects, Mice, Mice, Inbred C57BL, Neoplasms, Experimental, drug therapy, Protein Tyrosine Phosphatase, Non-Receptor Type 6, antagonists & inhibitors

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Src homology region 2 domain-containing phosphatase 1 (SHP-1) has been implicated as a potential cancer therapeutic target by its negative regulation of immune cell activation and the activity of the SHP-1 inhibitor sodium stibogluconate that induced IFN-gamma(+) cells for anti-tumor action. To develop more potent SHP-1-targeted anti-cancer agents, inhibitory leads were identified from a library of 34,000 drug-like compounds. Among the leads and active at low nM for recombinant SHP-1, tyrosine phosphatase inhibitor-1 (TPI-1) selectively increased SHP-1 phospho-substrates (pLck-pY394, pZap70, and pSlp76) in Jurkat T cells but had little effects on pERK1/2 or pLck-pY505 regulated by phosphatases SHP-2 or CD45, respectively. TPI-1 induced mouse splenic-IFN-gamma(+) cells in vitro, approximately 58-fold more effective than sodium stibogluconate, and increased mouse splenic-pLck-pY394 and -IFN-gamma(+) cells in vivo. TPI-1 also induced IFN-gamma(+) cells in human peripheral blood in vitro. Significantly, TPI-1 inhibited ( approximately 83%, p < 0.002) the growth of B16 melanoma tumors in mice at a tolerated oral dose in a T cell-dependent manner but had little effects on B16 cell growth in culture. TPI-1 also inhibited B16 tumor growth and prolonged tumor mice survival as a tolerated s.c. agent. TPI-1 analogs were identified with improved activities in IFN-gamma(+) cell induction and in anti-tumor actions. In particular, analog TPI-1a4 as a tolerated oral agent completely inhibited the growth of K1735 melanoma tumors and was more effective than the parental lead against MC-26 colon cancer tumors in mice. These results designate TPI-1 and the analogs as novel SHP-1 inhibitors with anti-tumor activity likely via an immune mechanism, supporting SHP-1 as a novel target for cancer treatment.

          Related collections

          Author and article information

          Comments

          Comment on this article