2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Trimetazidine Inhibits Renal Tubular Epithelial Cells to Mesenchymal Transition in Diabetic Rats via Upregulation of Sirt1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Trimetazidine (TMZ), as a metabolic regulator, is effective in treatment of coronary atherosclerotic heart disease with rare side effects in the clinic for long years. Interestingly, studies have shown that TMZ protects against several acute kidney injuries (AKI). However, the effect of TMZ on chronic kidney diseases (CKD) remains unknown. This study aimed to investigate the role of TMZ in diabetic nephropathy (DN) and its potential mechanisms. A rat model of DN was established in male Sprague-Dawley rats by streptozotocin (STZ) intraperitoneal injection. Experimental rats were separated into three groups: control, DN and DN + TMZ treatment. Metabolic parameters, pathological features and renal function markers were evaluated after 20 weeks of diabetes induction. In vitro experiments, the effect of TMZ on high fat and high glucose (HFG) induced or TGFβ1-induced epithelial-to-mesenchymal transition (EMT) was examined in HK-2 cells. Our results showed that TMZ could maintain renal function without affecting hemodynamic and plasma metabolic levels in diabetic rats. The effect was associated with a reversion of pathological progression of DN, especially for tubulointerstitial fibrosis. EMT is an important contributor to renal fibrosis. In this study, we investigated the role of TMZ in the process of EMT in DN. Mechanistically; TMZ attenuated HFG-induced EMT by relieving oxidative stress via deacetylation forkhead box O1 (FoxO1) in a Sirt1-dependent pathway. And it suppressed TGFβ1-induced EMT by deacetylating Smd4 in a Sirt1-dependent manner. Moreover, our study found that TMZ upregulated Sirt1 expression by increasing the expression of nicotinamide phosphoribosyl transferase (Nampt), which is a rate limiting enzyme for nicotinamide adenine dinucleotide (NAD +) generation by salvage pathway. And the increased NAD + promoted Sirt1 expression. In conclusion, TMZ can prevent renal dysfunction and pathogenesis of tubulointerstitial fibrosis in DN, partly by inhibition of EMT via FoxO1/ROS pathway and TGFβ/Smad pathway in a Nampt/NAD +/Sirt1 dependent manner.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Physiological and pathophysiological roles of NAMPT and NAD metabolism.

          Nicotinamide phosphoribosyltransferase (NAMPT) is a regulator of the intracellular nicotinamide adenine dinucleotide (NAD) pool. NAD is an essential coenzyme involved in cellular redox reactions and is a substrate for NAD-dependent enzymes. In various metabolic disorders and during ageing, levels of NAD are decreased. Through its NAD-biosynthetic activity, NAMPT influences the activity of NAD-dependent enzymes, thereby regulating cellular metabolism. In addition to its enzymatic function, extracellular NAMPT (eNAMPT) has cytokine-like activity. Abnormal levels of eNAMPT are associated with various metabolic disorders. NAMPT is able to modulate processes involved in the pathogenesis of obesity and related disorders such as nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) by influencing the oxidative stress response, apoptosis, lipid and glucose metabolism, inflammation and insulin resistance. NAMPT also has a crucial role in cancer cell metabolism, is often overexpressed in tumour tissues and is an experimental target for antitumour therapies. In this Review, we discuss current understanding of the functions of NAMPT and highlight progress made in identifying the physiological role of NAMPT and its relevance in various human diseases and conditions, such as obesity, NAFLD, T2DM, cancer and ageing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diabetic kidney disease: a report from an ADA Consensus Conference.

            The incidence and prevalence of diabetes mellitus have grown significantly throughout the world, due primarily to the increase in type 2 diabetes. This overall increase in the number of people with diabetes has had a major impact on development of diabetic kidney disease (DKD), one of the most frequent complications of both types of diabetes. DKD is the leading cause of end-stage renal disease (ESRD), accounting for approximately 50% of cases in the developed world. Although incidence rates for ESRD attributable to DKD have recently stabilized, these rates continue to rise in high-risk groups such as middle-aged African Americans, Native Americans, and Hispanics. The costs of care for people with DKD are extraordinarily high. In the Medicare population alone, DKD-related expenditures among this mostly older group were nearly $25 billion in 2011. Due to the high human and societal costs, the Consensus Conference on Chronic Kidney Disease and Diabetes was convened by the American Diabetes Association in collaboration with the American Society of Nephrology and the National Kidney Foundation to appraise issues regarding patient management, highlighting current practices and new directions. Major topic areas in DKD included (1) identification and monitoring, (2) cardiovascular disease and management of dyslipidemia, (3) hypertension and use of renin-angiotensin-aldosterone system blockade and mineralocorticoid receptor blockade, (4) glycemia measurement, hypoglycemia, and drug therapies, (5) nutrition and general care in advanced-stage chronic kidney disease, (6) children and adolescents, and (7) multidisciplinary approaches and medical home models for health care delivery. This current state summary and research recommendations are designed to guide advances in care and the generation of new knowledge that will meaningfully improve life for people with DKD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis

              Chronic kidney disease (CKD) remains one of the leading causes of death in the developed world and acute kidney injury (AKI) is now recognized as a major risk factor in its development. Understanding the factors leading to CKD after acute injury are limited by current animal models of AKI which concurrently target various kidney cell types such as epithelial, endothelial and inflammatory cells. Here we developed a mouse model of kidney injury using the Six2-Cre-LoxP technology to selectively activate expression of the simian diphtheria toxin receptor in renal epithelia derived from the metanephric mesenchyme. By adjusting the timing and dose of diphtheria toxin a highly selective model of tubular injury was created to define the acute and chronic consequences of isolated epithelial injury. The diphtheria toxin-induced sublethal tubular epithelial injury was confined to the S1 and S2 segments of the proximal tubule rather than being widespread in the metanephric mesenchyme derived epithelial lineage. Acute injury was promptly followed by inflammatory cell infiltration and robust tubular cell proliferation leading to complete recovery after a single toxin insult. In striking contrast, three insults to renal epithelial cells at one week intervals resulted in maladaptive repair with interstitial capillary loss, fibrosis and glomerulosclerosis which was highly correlated with the degree of interstitial fibrosis. Thus, selective epithelial injury can drive the formation of interstitial fibrosis, capillary rarefaction and potentially glomerulosclerosis, substantiating a direct role for damaged tubule epithelium in the pathogenesis of CKD.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                29 July 2020
                2020
                : 11
                : 1136
                Affiliations
                [1] 1 Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
                [2] 2 Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology , Wuhan, China
                Author notes

                Edited by: John D. Imig, Medical College of Wisconsin, United States

                Reviewed by: Regalla Kumarswamy, Centre for Cellular & Molecular Biology (CCMB), India; Ariela Benigni, Mario Negri Pharmacological Research Institute (IRCCS), Italy

                *Correspondence: Hong Wang, hong_wang1988@ 123456126.com

                This article was submitted to Renal Pharmacology, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2020.01136
                7403491
                32848753
                e59c3b01-75e0-4cc3-a8ea-e124abd4e296
                Copyright © 2020 Yang, Wang, He, Liu, Chen, Wang, Wang and Wang

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 October 2019
                : 13 July 2020
                Page count
                Figures: 8, Tables: 1, Equations: 0, References: 75, Pages: 15, Words: 6949
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 81570367, 81900341
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                diabetic nephropathy,epithelial-to-mesenchymal transition,trimetazidine,sirt1,reactive oxygen species

                Comments

                Comment on this article