5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Non-Cannabinoid Metabolites of Cannabis sativa L. with Therapeutic Potential

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cannabis plant ( Cannabis sativa L.) produces an estimated 545 chemical compounds of different biogenetic classes. In addition to economic value, many of these phytochemicals have medicinal and physiological activity. The plant is most popularly known for its two most-prominent and most-studied secondary metabolites—Δ 9-tetrahydrocannabinol (Δ 9-THC) and cannabidiol (CBD). Both Δ 9-THC and CBD have a wide therapeutic window across many ailments and form part of a class of secondary metabolites called cannabinoids—of which approximately over 104 exist. This review will focus on non-cannabinoid metabolites of Cannabis sativa that also have therapeutic potential, some of which share medicinal properties similar to those of cannabinoids. The most notable of these non-cannabinoid phytochemicals are flavonoids and terpenes. We will also discuss future directions in cannabis research and development of cannabis-based pharmaceuticals. Caflanone, a flavonoid molecule with selective activity against the human viruses including the coronavirus OC43 (HCov-OC43) that is responsible for COVID-19, and certain cancers, is one of the most promising non-cannabinoid molecules that is being advanced into clinical trials. As validated by thousands of years of the use of cannabis for medicinal purposes, vast anecdotal evidence abounds on the medicinal benefits of the plant. These benefits are attributed to the many phytochemicals in this plant, including non-cannabinoids. The most promising non-cannabinoids with potential to alleviate global disease burdens are discussed.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidative Stress and Antioxidant Defense

          Abstract Reactive oxygen species (ROS) are produced by living organisms as a result of normal cellular metabolism and environmental factors, such as air pollutants or cigarette smoke. ROS are highly reactive molecules and can damage cell structures such as carbohydrates, nucleic acids, lipids, and proteins and alter their functions. The shift in the balance between oxidants and antioxidants in favor of oxidants is termed “oxidative stress.” Regulation of reducing and oxidizing (redox) state is critical for cell viability, activation, proliferation, and organ function. Aerobic organisms have integrated antioxidant systems, which include enzymatic and nonenzymatic antioxidants that are usually effective in blocking harmful effects of ROS. However, in pathological conditions, the antioxidant systems can be overwhelmed. Oxidative stress contributes to many pathological conditions and diseases, including cancer, neurological disorders, atherosclerosis, hypertension, ischemia/perfusion, diabetes, acute respiratory distress syndrome, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and asthma. In this review, we summarize the cellular oxidant and antioxidant systems and discuss the cellular effects and mechanisms of the oxidative stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Therapeutic potential of resveratrol: the in vivo evidence.

            Resveratrol, a constituent of red wine, has long been suspected to have cardioprotective effects. Interest in this compound has been renewed in recent years, first from its identification as a chemopreventive agent for skin cancer, and subsequently from reports that it activates sirtuin deacetylases and extends the lifespans of lower organisms. Despite scepticism concerning its bioavailability, a growing body of in vivo evidence indicates that resveratrol has protective effects in rodent models of stress and disease. Here, we provide a comprehensive and critical review of the in vivo data on resveratrol, and consider its potential as a therapeutic for humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Cannabis sativa: The Plant of the Thousand and One Molecules

              Cannabis sativa L. is an important herbaceous species originating from Central Asia, which has been used in folk medicine and as a source of textile fiber since the dawn of times. This fast-growing plant has recently seen a resurgence of interest because of its multi-purpose applications: it is indeed a treasure trove of phytochemicals and a rich source of both cellulosic and woody fibers. Equally highly interested in this plant are the pharmaceutical and construction sectors, since its metabolites show potent bioactivities on human health and its outer and inner stem tissues can be used to make bioplastics and concrete-like material, respectively. In this review, the rich spectrum of hemp phytochemicals is discussed by putting a special emphasis on molecules of industrial interest, including cannabinoids, terpenes and phenolic compounds, and their biosynthetic routes. Cannabinoids represent the most studied group of compounds, mainly due to their wide range of pharmaceutical effects in humans, including psychotropic activities. The therapeutic and commercial interests of some terpenes and phenolic compounds, and in particular stilbenoids and lignans, are also highlighted in view of the most recent literature data. Biotechnological avenues to enhance the production and bioactivity of hemp secondary metabolites are proposed by discussing the power of plant genetic engineering and tissue culture. In particular two systems are reviewed, i.e., cell suspension and hairy root cultures. Additionally, an entire section is devoted to hemp trichomes, in the light of their importance as phytochemical factories. Ultimately, prospects on the benefits linked to the use of the -omics technologies, such as metabolomics and transcriptomics to speed up the identification and the large-scale production of lead agents from bioengineered Cannabis cell culture, are presented.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Plants (Basel)
                Plants (Basel)
                plants
                Plants
                MDPI
                2223-7747
                20 February 2021
                February 2021
                : 10
                : 2
                : 400
                Affiliations
                [1 ]Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; lowebiotech@ 123456gmail.com (H.L.); jbryant@ 123456ihv.umaryland.edu (J.B.)
                [2 ]Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA; ngeh.toyang@ 123456flavocure.com
                [3 ]Flavocure Biotech Inc., Baltimore, MD 21202, USA
                [4 ]Institute of Human Virology (IHV), University of Maryland School of Medicine, Baltimore, MD 21202, USA
                [5 ]Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; wngwa@ 123456bwh.harvard.edu
                Author notes
                [* ]Correspondence: blairgsteele@ 123456gmail.com ; Tel.: +876-926-8502
                Author information
                https://orcid.org/0000-0001-9683-6192
                Article
                plants-10-00400
                10.3390/plants10020400
                7923270
                33672441
                e5a6dcc2-a2aa-4596-a6da-68ead783a45a
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 24 November 2020
                : 18 December 2020
                Categories
                Review

                cannabinoids,δ9-tetrahydrocannabinol,cannabidiol,non-cannabinoids,flavonoids,terpenes,secondary metabolites

                Comments

                Comment on this article