Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Incidence of maple syrup urine disease, propionic acidemia, and methylmalonic aciduria from newborn screening data

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Incidence for the branched-chain intoxication-type disorders, maple syrup urine disease, propionic acidemia and methlymalonic aciduria is dependent on the population screened. Here newborn screening results from three world regions, state screening laboratories in the United States, a region in Germany and Kuwait provides new incidence numbers. Maple syrup urine disease incidence in the United States was calculated to be 1: 220219, in South-West Germany 1: 119573 (Germany nationwide 1:177978), and in Kuwait 1: 59426. Incidence of propionic acidemia alone is calculated to be 1: 242741 in the United States, 1: 284450 in South-West Germany (Germany nationwide 1:202617) and 1:59426 in Kuwait. Incidence of isolated methylmalonic aciduria alone is 1:69354 in the United States, 1:568901 in South-West Germany (Germany nationwide 1:159199) and 1: 19809 in Kuwait. In the United States several newborn screening laboratories combine their results for propionic acidemia and methylmalonic aciduria, and also include combined remethylation disorders in the respective category, resulting in an incidence of 1:50709. Combined evaluation of methylmalonic aciduria, propionic aciduria and combined remethylation disorders results in a similar incidence for Germany of 1:67539. This evaluation of newborn screening incidences reflects some population differences for three intoxication-type metabolic disorders. However, different sample sizes of the populations screened over different time periods, and differences in case definitions for methylmalonic acidurias have to be considered when interpreting these data.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Propionyl-CoA carboxylase - A review.

          Propionyl-CoA carboxylase (PCC) is the enzyme which catalyzes the carboxylation of propionyl-CoA to methylmalonyl-CoA and is encoded by the genes PCCA and PCCB to form a hetero-dodecamer. Dysfunction of PCC leads to the inherited metabolic disorder propionic acidemia, which can result in an affected individual presenting with metabolic acidosis, hyperammonemia, lethargy, vomiting and sometimes coma and death if not treated. Individuals with propionic acidemia also have a number of long term complications resulting from the dysfunction of the PCC enzyme. Here we present an overview of the current knowledge about the structure and function of PCC. We review an updated list of human variants which are published and provide an overview of the disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Methylmalonic and propionic aciduria.

            Methylmalonic and propionic aciduria (PA) are the most frequent forms of branched-chain organic acidurias. These autosomal recessive disorders result from deficient activity of methylmalonyl-CoA mutase and propionyl-CoA carboxylase, respectively. Clinically, acute or chronic neurologic signs are caused by the accumulation of toxic compounds proximal to the metabolic block. Phenotype varies from severe neonatal-onset forms with high mortality and poor outcome to milder forms with a later onset. In both cases the clinical course is dominated by the risk of relapses of life-threatening episodes of metabolic decompensation and of severe organ failure. Despite improvement of treatment, the overall outcome remains disappointing with no major differences between the two diseases. The diagnosis is based on the presence of characteristic compounds in body fluids as detected by organic acid analysis in urine and acylcarnitine profile in blood. Therapy is based on low-protein high-energy diet, carnitine supplementation, and metronidazole. Some patients with methylmalonic aciduria (MMA) respond to pharmacological doses of vitamin B12. Given the poor long-term prognosis, liver transplantation has been recently attempted as an alternative therapy to conventional medical treatment to cure the underlying metabolic defect. Nevertheless, the overall experience to date does not clearly demonstrate its effectiveness in preventing further deterioration or improving survival and quality of life. The recent implementation of neonatal screening by electrospray tandem mass spectrometry has decreased early mortality and improved the short-term outcome, without changing the detection rate of both diseases in the screening population compared to clinically detected cases. However, the limited number of patients and the short duration of their follow-up do not yet permit drawing final conclusions on its effect on the long-term outcome of methylmalonic and propionic acidemia. (c) 2006 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diagnosis and treatment of maple syrup disease: a study of 36 patients.

              To evaluate an approach to the diagnosis and treatment of maple syrup disease (MSD). Family histories and molecular testing for the Y393N mutation of the E1alpha subunit of the branched-chain alpha-ketoacid dehydrogenase allow us to identify infants who were at high risk for MSD. Amino acid concentrations were measured in blood specimens from these at-risk infants between 12 and 24 hours of age. An additional 18 infants with MSD were diagnosed between 4 and 16 days of age because of metabolic illness. A treatment protocol for MSD was designed to 1) inhibit endogenous protein catabolism, 2) sustain protein synthesis, 3) prevent deficiencies of essential amino acids, and 4) maintain normal serum osmolarity. Our protocol emphasizes the enhancement of protein anabolism and dietary correction of imbalances in plasma amino acids rather than removal of leucine by dialysis or hemofiltration. During acute illnesses, the rate of decrease of the plasma leucine level was monitored as an index of net protein synthesis. The treatment protocol for acute illnesses included the use of mannitol, furosemide, and hypertonic saline to maintain or reestablish normal serum sodium and extracellular osmolarity and thereby prevent or reverse life-threatening cerebral edema. Similar principles were followed for both sick and well outpatient management, especially during the first year, when careful matching of branched-chain amino acid intake with rapidly changing growth rates was necessary. Branched-chain ketoacid excretion was monitored frequently at home and branched-chain amino acid levels were measured within the time of a routine clinic visit, allowing immediate diagnosis and treatment of metabolic derangements. 1) Eighteen neonates with MSD were identified in the high-risk group (n = 39) between 12 and 24 hours of age using amino acid analysis of plasma or whole blood collected on filter paper. The molar ratio of leucine to alanine in plasma ranged from 1.3 to 12.4, compared with a control range of 0.12 to 0.53. None of the infants identified before 3 days of age and managed by our treatment protocol became ill during the neonatal period, and 16 of the 18 were managed without hospitalization. 2) Using our treatment protocol, 18 additional infants who were biochemically intoxicated at the time of diagnosis recovered rapidly. In all infants, plasma leucine levels decreased to 219 patient years showed that, although common infections frequently cause loss of metabolic control, the overall rate of hospitalization after the neonatal period was only 0.56 days per patient per year of follow-up, and developmental outcomes were uniformly good. Four patients developed life-threatening cerebral edema as a consequence of metabolic intoxication induced by infection, but all recovered. These 4 patients each showed evidence that acutely decreased serum sodium concentration and decreased serum osmolarity were associated with rapid progression of cerebral edema during their acute illnesses. Classical MSD can be managed to allow a benign neonatal course, normal growth and development, and low hospitalization rates. However, neurologic function may deteriorate rapidly at any age because of metabolic intoxication provoked by common infections and injuries. Effective management of the complex pathophysiology of this biochemical disorder requires integrated management of general medical care and nutrition, as well as control of several variables that influence endogenous protein anabolism and catabolism, plasma amino acid concentrations, and serum osmolarity.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Genet Metab Rep
                Mol Genet Metab Rep
                Molecular Genetics and Metabolism Reports
                Elsevier
                2214-4269
                05 April 2018
                June 2018
                05 April 2018
                : 15
                : 106-109
                Affiliations
                [a ]Children's National Rare Disease Institute and Children's Research Institute, Washington DC, United States
                [b ]University Hospital Heidelberg, Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, Heidelberg, Germany
                Author notes
                [* ]Corresponding author at: 111 Michigan Ave NW, Suite 1950, Washington DC 20010, United States. KChapman@ 123456childrensnational.org
                Article
                S2214-4269(18)30010-7
                10.1016/j.ymgmr.2018.03.011
                6047110
                30023298
                e63cd95f-9d74-471d-9409-e68e9a83122f
                © 2018 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 12 December 2017
                : 23 March 2018
                : 23 March 2018
                Categories
                Short Communication

                Comments

                Comment on this article

                scite_

                Similar content297

                Cited by17

                Most referenced authors381