16
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Retinoic Acid Regulation of Mesangial Cell Apoptosis

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Retinoic acid (RA) is recently used for the treatment of experimental glomerular diseases. However, mechanisms underlying its therapeutic effects are largely unknown. We recently reported that RA has the potential for protecting certain cells from particular injury. A typical example is its effect on oxidant-induced apoptosis of mesangial cells. Mesangial cells exposed to hydrogen peroxide undergo apoptosis through activation of the c-Jun N-terminal kinase activator protein 1 pathway. RA dramatically inhibits this process via suppression of c- fos/c- jun expression and inhibition of the c-Jun N-terminal kinase activation. The anti-apoptotic effect of RA is mediated by both nuclear receptor dependent and nuclear receptor independent mechanisms and is, at least in part, mediated by induction of mitogen-activated protein kinase phosphatase 1. In this review, we briefly summarize the current knowledge on molecular mechanisms involved in the anti-apoptotic effects of RA.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase.

          Reactive oxygen species have been implicated both in the ageing process and in degenerative diseases, including arthritis and cancer. Bacteria adapt to the lethal effects of oxidants such as hydrogen peroxide by inducing the expression of protective stress genes. Analogous responses have been identified in human cells. For example, haem oxygenase is a major stress protein in human cells treated with oxidants, and reactive oxygen intermediates activate NF-kappa B, a transcriptional regulator of genes involved in inflammatory and acute-phase responses. We report here the isolation and characterization of a novel complementary DNA (CL100) corresponding to a messenger RNA that is highly inducible by oxidative stress and heat shock in human skin cells. The cDNA contains an open reading frame specifying a protein of M(r) 39.3K with the structural features of a non-receptor-type protein-tyrosine phosphatase and which has significant amino-acid sequence similarity to a Tyr/Ser-protein phosphatase encoded by the late gene H1 of vaccinia virus. The purified protein encoded by the CL100 open reading frame expressed in bacteria has intrinsic phosphatase activity. Given the relationship between the levels of protein-tyrosine phosphorylation, receptor activity, cellular proliferation and cell-cycle control, the induction of this gene may play an important regulatory role in the human cellular response to environmental stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Compartment-specific regulation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) by ERK-dependent and non-ERK-dependent inductions of MAPK phosphatase (MKP)-3 and MKP-1 in differentiating P19 cells.

            Activation of mitogen-activated protein kinases (MAPKs), their upstream activators MAPK kinases (MAPKKs or MEKs) and induction of MKP-1 (CL100/3CH134) and MKP-3 (Pyst1/rVH6) dual-specificity MAPK phosphatases (MKPs) were studied in the mouse embryonic stem cell line P19 during the 7 day induction of neuronal differentiation triggered by aggregation and retinoic acid. ERK (extracellular signal-regulated kinase), but not JNK (c-Jun N-terminal kinase), was found activated with biphasic kinetics: a first transient phase on days 1 and 2, followed by a second activation that was sustained until the appearance of a neuronal phenotype. MEK activation appeared coincident with ERK activation. Cytosolic MKP-3 was induced in parallel to ERK activation, the induction being dependent on ERK activation, as was shown using the MEK-1 inhibitor PD98059. In contrast, nuclear MKP-1 was transiently elevated at 48 h, coincident with ERK inactivation and independently of ERK activity. As shown by cell fractionation, activated ERK is translocated to the nucleus. The complementary induction of ERK-specific phosphatases MKP-1 and MKP-3 permits precise and independent control of cytoplasmic and nuclear ERK activity, most probably required to properly induce a complex cellular programme of differentiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Selective involvement of superoxide anion, but not downstream compounds hydrogen peroxide and peroxynitrite, in tumor necrosis factor-alpha-induced apoptosis of rat mesangial cells.

              Tumor necrosis factor-alpha (TNF-alpha) induces reactive oxygen species (ROS) that serve as second messengers for intracellular signaling. Currently, precise roles of individual ROS in the actions of TNF-alpha remain to be elucidated. In this report, we investigated the roles of superoxide anion (O-(2)), hydrogen peroxide (H(2)O(2)), and peroxynitrite (ONOO(-)) in TNF-alpha-triggered apoptosis of mesangial cells. Mesangial cells stimulated by TNF-alpha produced O-(2) and underwent apoptosis. The apoptosis was inhibited by transfection with manganese superoxide dismutase or treatment with a pharmacological scavenger of O-(2), Tiron. In contrast, although exogenous H(2)O(2) induced apoptosis, TNF-alpha-triggered apoptosis was not affected either by transfection with catalase cDNA or by treatment with catalase protein or glutathione ethyl ester. Similarly, although ONOO(-) precursor SIN-1 induced apoptosis, treatment with a scavenger of ONOO(-), uric acid, or an inhibitor of nitric oxide synthesis, N(G)-nitro-L-argininemethyl ester hydrochloride, did not affect the TNF-alpha-triggered apoptosis. Like TNF-alpha-induced apoptosis, treatment with a O-(2)-releasing agent, pyrogallol, induced typical apoptosis even in the concurrent presence of scavengers for H(2)O(2) and ONOO(-). These results suggested that, in mesangial cells, TNF-alpha induces apoptosis through selective ROS. O-(2), but not H(2)O(2) or ONOO(-), was identified as the crucial mediator for the TNF-alpha-initiated, apoptotic pathway.
                Bookmark

                Author and article information

                Journal
                EXN
                Nephron Exp Nephrol
                10.1159/issn.1660-2129
                Cardiorenal Medicine
                S. Karger AG
                1660-2129
                2002
                2002
                30 May 2002
                : 10
                : 3
                : 171-175
                Affiliations
                Department of Medicine, Royal Free and University College Medical School, University College London, UK
                Article
                58343 Exp Nephrol 2002;10:171–175
                10.1159/000058343
                12053118
                e6a55912-1c5a-4404-bc60-ccc0d6c8fa23
                © 2002 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 1, References: 30, Pages: 5
                Categories
                Minireview

                Cardiovascular Medicine,Nephrology
                Mitogen-activated protein kinase phosphatase 1 (MKP-1),Apoptosis,Retinoic acid,Oxidative stress,Mesangial cell

                Comments

                Comment on this article