16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      cAMP-Dependent Growth Cone Guidance by Netrin-1

      , , ,   , ,
      Neuron
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Netrin-1 is known to function as a chemoattractant for several classes of developing axons and as a chemorepellent for other classes of axons, apparently dependent on the receptor type expressed by responsive cells. In culture, growth cones of embryonic Xenopus spinal neurons exhibited chemoattractive turning toward the source of netrin-1 but showed chemorepulsive responses in the presence of a competitive analog of cAMP or an inhibitor of protein kinase A. Both attractive and repulsive responses were abolished by depleting extracellular calcium and by adding a blocking antibody against the netrin-1 receptor Deleted in Colorectal Cancer. Thus, nerve growth cones may respond to the same guidance cue with opposite turning behavior, dependent on other coincident signals that set the level of cytosolic cAMP.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene.

          The DCC (Deleted in colorectal cancer) gene was first identified as a candidate for a tumour-suppressor gene on human chromosome 18q. More recently, in vitro studies in rodents have provided evidence that DCC might function as a receptor for the axonal chemoattractant netrin-1. Inactivation of the murine Dcc gene caused defects in axonal projections that are similar to those observed in netrin-1-deficient mice but did not affect growth, differentiation, morphogenesis or tumorigenesis in mouse intestine. These observations fail to support a tumour-suppressor function for Dcc, but are consistent with the hypothesis that DCC is a component of a receptor for netrin-1.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord

            The guidance of axons to their targets in the developing nervous system is believed to involve diffusible chemotropic factors secreted by target cells. Floor plate cells at the ventral midline of the spinal cord secrete a diffusible factor or factors that promotes the outgrowth of spinal commissural axons and attracts these axons in vitro. Two membrane-associated proteins isolated from brain, netrin-1 and netrin-2, possess commissural axon outgrowth-promoting activity. We show here that netrin-1 RNA is expressed by floor plate cells, whereas netrin-2 RNA is detected at lower levels in the ventral two-thirds of the spinal cord, but not the floor plate. Heterologous cells expressing recombinant netrin-1 or netrin-2 secrete diffusible forms of the proteins and can attract commissural axons at a distance. These results show that netrin-1 is a chemotropic factor expressed by floor plate cells and suggest that the two netrin proteins guide commissural axons in the developing spinal cord.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues.

              UNC-6 netrin, a laminin-related protein secreted from neuroglia and neurons along the ventral midline, orients migrating cells and pioneering growth cones on the nematode epidermis. UNC-5, a cell surface protein expressed on motile cells and pioneer axons, orients movements away from UNC-6 sources. UNC-40, a homolog of the cell surface proteins DCC (Deleted in Colorectal Cancer) and neogenin, is also expressed on motile cells and pioneer neurons. UNC-40 acts cell autonomously to orient movement toward UNC-6 sources. For cells coexpressing UNC-5, it helps orient movement away from UNC-6 sources. Finally, UNC-40 helps determine the dorsoventral position of cells undergoing purely longitudinal migrations. Together with the recent report that DCC is a netrin receptor in vertebrates, our results suggest that UNC-40 is a component of UNC-6 receptors on motile cells.
                Bookmark

                Author and article information

                Journal
                Neuron
                Neuron
                Elsevier BV
                08966273
                December 1997
                December 1997
                : 19
                : 6
                : 1225-1235
                Article
                10.1016/S0896-6273(00)80414-6
                9427246
                e6a87e0b-8f3a-4c04-8d32-5d22f097e497
                © 1997

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article