7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Artificial intelligence applications in inflammatory bowel disease: Emerging technologies and future directions

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inflammatory bowel disease (IBD) is a complex and multifaceted disorder of the gastrointestinal tract that is increasing in incidence worldwide and associated with significant morbidity. The rapid accumulation of large datasets from electronic health records, high-definition multi-omics (including genomics, proteomics, transcriptomics, and metagenomics), and imaging modalities (endoscopy and endomicroscopy) have provided powerful tools to unravel novel mechanistic insights and help address unmet clinical needs in IBD. Although the application of artificial intelligence (AI) methods has facilitated the analysis, integration, and interpretation of large datasets in IBD, significant heterogeneity in AI methods, datasets, and clinical outcomes and the need for unbiased prospective validations studies are current barriers to incorporation of AI into clinical practice. The purpose of this review is to summarize the most recent advances in the application of AI and machine learning technologies in the diagnosis and risk prediction, assessment of disease severity, and prediction of clinical outcomes in patients with IBD.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies.

          Inflammatory bowel disease is a global disease in the 21st century. We aimed to assess the changing incidence and prevalence of inflammatory bowel disease around the world.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Environmental triggers in IBD: a review of progress and evidence

            A number of environmental factors have been associated with the development of IBD. Alteration of the gut microbiota, or dysbiosis, is closely linked to initiation or progression of IBD, but whether dysbiosis is a primary or secondary event is unclear. Nevertheless, early-life events such as birth, breastfeeding and exposure to antibiotics, as well as later childhood events, are considered potential risk factors for IBD. Air pollution, a consequence of the progressive contamination of the environment by countless compounds, is another factor associated with IBD, as particulate matter or other components can alter the host's mucosal defences and trigger immune responses. Hypoxia associated with high altitude is also a factor under investigation as a potential new trigger of IBD flares. A key issue is how to translate environmental factors into mechanisms of IBD, and systems biology is increasingly recognized as a strategic tool to unravel the molecular alterations leading to IBD. Environmental factors add a substantial level of complexity to the understanding of IBD pathogenesis but also promote the fundamental notion that complex diseases such as IBD require complex therapies that go well beyond the current single-agent treatment approach. This Review describes the current conceptualization, evidence, progress and direction surrounding the association of environmental factors with IBD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study

              Objective The effect of colonoscopy on colorectal cancer mortality is limited by several factors, among them a certain miss rate, leading to limited adenoma detection rates (ADRs). We investigated the effect of an automatic polyp detection system based on deep learning on polyp detection rate and ADR. Design In an open, non-blinded trial, consecutive patients were prospectively randomised to undergo diagnostic colonoscopy with or without assistance of a real-time automatic polyp detection system providing a simultaneous visual notice and sound alarm on polyp detection. The primary outcome was ADR. Results Of 1058 patients included, 536 were randomised to standard colonoscopy, and 522 were randomised to colonoscopy with computer-aided diagnosis. The artificial intelligence (AI) system significantly increased ADR (29.1%vs20.3%, p<0.001) and the mean number of adenomas per patient (0.53vs0.31, p<0.001). This was due to a higher number of diminutive adenomas found (185vs102; p<0.001), while there was no statistical difference in larger adenomas (77vs58, p=0.075). In addition, the number of hyperplastic polyps was also significantly increased (114vs52, p<0.001). Conclusions In a low prevalent ADR population, an automatic polyp detection system during colonoscopy resulted in a significant increase in the number of diminutive adenomas detected, as well as an increase in the rate of hyperplastic polyps. The cost–benefit ratio of such effects has to be determined further. Trial registration number ChiCTR-DDD-17012221; Results.
                Bookmark

                Author and article information

                Contributors
                Journal
                World J Gastroenterol
                World J Gastroenterol
                WJG
                World Journal of Gastroenterology
                Baishideng Publishing Group Inc
                1007-9327
                2219-2840
                7 May 2021
                7 May 2021
                : 27
                : 17
                : 1920-1935
                Affiliations
                Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States. jgubatan@ 123456stanford.edu
                Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
                Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
                Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
                Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
                Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
                Author notes

                Author contributions: Gubatan J organized and led the literature review; Levitte S, Balabanis T and Patel A performed the primary literature and data extraction; Gubatan J reviewed literature search results and extracted data for inclusion; Gubatan J drafted the manuscript; Wei MT and Sinha SR provided critical review of the manuscript; all authors interpreted the results and contributed to critical review of the manuscript; Gubatan J had full access to the study data and takes responsibility for the integrity of the data and accuracy of the analysis.

                Supported by Chan Zuckerberg Biohub Physician Scientist Scholar Award; and National Institutes of Health NIDDK Loan Repayment Program Award, No. GTQR5718.

                Corresponding author: John Gubatan, MD, Academic Research, Consultant Physician-Scientist, Postdoctoral Fellow, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, 420 Broadway Street Pavilion D, 2 nd Floor, Redwood City, CA 94063, United States. jgubatan@ 123456stanford.edu

                Article
                jWJG.v27.i17.pg1920
                10.3748/wjg.v27.i17.1920
                8108036
                34007130
                e6e132b1-723a-46fb-b144-afb2ed11c21a
                ©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

                This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/

                History
                : 26 January 2021
                : 4 March 2021
                : 13 April 2021
                Categories
                Minireviews

                artificial intelligence,machine learning,inflammatory bowel disease,crohn’s disease,ulcerative colitis,clinical outcomes

                Comments

                Comment on this article