1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Spectrins: molecular organizers and targets of neurological disorders

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references178

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of protein-coding genetic variation in 60,706 humans

          Summary Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. We describe the aggregation and analysis of high-quality exome (protein-coding region) sequence data for 60,706 individuals of diverse ethnicities generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of truncating variants with 72% having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human “knockout” variants in protein-coding genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical application of whole-exome sequencing across clinical indications.

            We report the diagnostic yield of whole-exome sequencing (WES) in 3,040 consecutive cases at a single clinical laboratory.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antisense oligonucleotides: the next frontier for treatment of neurological disorders

              Antisense oligonucleotides (ASOs) were first discovered to influence RNA processing and modulate protein expression over two decades ago; however, progress translating these agents into the clinic has been hampered by inadequate target engagement, insufficient biological activity, and off-target toxic effects. Over the years, novel chemical modifications of ASOs have been employed to address these issues. These modifications, in combination with elucidation of the mechanism of action of ASOs and improved clinical trial design, have provided momentum for the translation of ASO-based strategies into therapies. Many neurological conditions lack an effective treatment; however, as research progressively disentangles the pathogenic mechanisms of these diseases, they provide an ideal platform to test ASO-based strategies. This steady progress reached a pinnacle in the past few years with approvals of ASOs for the treatment of spinal muscular atrophy and Duchenne muscular dystrophy, which represent landmarks in a field in which disease-modifying therapies were virtually non-existent. With the rapid development of improved next-generation ASOs toward clinical application, this technology now holds the potential to have a dramatic effect on the treatment of many neurological conditions in the near future.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Reviews Neuroscience
                Nat Rev Neurosci
                Springer Science and Business Media LLC
                1471-003X
                1471-0048
                January 25 2023
                Article
                10.1038/s41583-022-00674-6
                36697767
                e6e31092-32a4-47b1-9877-363f2c2d1065
                © 2023

                https://www.springernature.com/gp/researchers/text-and-data-mining

                https://www.springernature.com/gp/researchers/text-and-data-mining

                History

                Comments

                Comment on this article