21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulating hippocampal hyperexcitability through GABAB Receptors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Disturbances of GABAergic inhibition are a major cause of epileptic seizures. GABA exerts its actions via ionotropic GABAA receptors and metabotropic G protein‐coupled GABAB receptors. Malfunction of GABAA inhibition has long been recognized in seizure genesis but the role of GABAB receptors in controlling seizure activity is still not well understood. Here, we examined the anticonvulsive, or inhibitory effects, of GABAB receptors in a mouse model of hippocampal kindling as well as mouse hippocampal slices through the use of GS 39783, a positive allosteric GABAB receptor modulator, and CGP 55845, a selective GABAB receptor antagonist. When administered via intraperitoneal injections in kindled mice, GS 39783 (5 mg/kg) did not attenuate hippocampal EEG discharges, but did reduce aberrant hippocampal spikes, whereas CGP 55845 (10 mg/kg) prolonged hippocampal discharges and increased spike incidences. When examined in hippocampal slices, neither GS 39783 at 5 μmol/L nor the GABAB receptor agonist baclofen at 0.1 μmol/L alone significantly altered repetitive excitatory field potentials, but GS 39783 and baclofen together reversibly abolished these field potentials. In contrast, CGP 55845 at 1 μmol/L facilitated induction and incidence of these field potentials. In addition, CGP 55845 attenuated the paired pulse depression of CA3 population spikes and increased the frequency of EPSCs in individual CA3 pyramidal neurons. Collectively, these data suggest that GABABB receptors regulate hippocampal hyperexcitability by inhibiting CA3 glutamatergic synapses. We postulate that positive allosteric modulation of GABAB receptors may be effective in reducing seizure‐related hyperexcitability.

          Abstract

          GABAB positive modulator GS 39783 attenuated, whereas GABAB antagonist CGP55845 facilitated hippocampal EEG spikes in kindled mice and excitatory field potentials in hippocampal slices. We postulate that GABAB receptors may inhibit CA3 glutamate synapses and hence regulate hippocampal hyperexcitability.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Kindling and status epilepticus models of epilepsy: rewiring the brain.

          This review focuses on the remodeling of brain circuitry associated with epilepsy, particularly in excitatory glutamate and inhibitory GABA systems, including alterations in synaptic efficacy, growth of new connections, and loss of existing connections. From recent studies on the kindling and status epilepticus models, which have been used most extensively to investigate temporal lobe epilepsy, it is now clear that the brain reorganizes itself in response to excess neural activation, such as seizure activity. The contributing factors to this reorganization include activation of glutamate receptors, second messengers, immediate early genes, transcription factors, neurotrophic factors, axon guidance molecules, protein synthesis, neurogenesis, and synaptogenesis. Some of the resulting changes may, in turn, contribute to the permanent alterations in seizure susceptibility. There is increasing evidence that neurogenesis and synaptogenesis can appear not only in the mossy fiber pathway in the hippocampus but also in other limbic structures. Neuronal loss, induced by prolonged seizure activity, may also contribute to circuit restructuring, particularly in the status epilepticus model. However, it is unlikely that any one structure, plastic system, neurotrophin, or downstream effector pathway is uniquely critical for epileptogenesis. The sensitivity of neural systems to the modulation of inhibition makes a disinhibition hypothesis compelling for both the triggering stage of the epileptic response and the long-term changes that promote the epileptic state. Loss of selective types of interneurons, alteration of GABA receptor configuration, and/or decrease in dendritic inhibition could contribute to the development of spontaneous seizures.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurons that fire together also conspire together: is normal sleep circuitry hijacked to generate epilepsy?

            Brain circuits oscillate during sleep. The same circuits appear to generate pathological oscillations. In this review, we discuss recent advances in our understanding of how epilepsy co-opts normal, sleep-related circuits to generate seizures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Local and diffuse synaptic actions of GABA in the hippocampus.

              In the CNS, gamma-aminobutyric acid (GABA) acts as an inhibitory transmitter via ligand-gated GABAA receptor channels and G protein-coupled GABAB receptors. Both of these receptor types mediate inhibitory postsynaptic transmission in the hippocampus. In addition to these direct postsynaptic actions, GABAB receptor agonists inhibit excitatory transmission through presynaptic receptors on excitatory afferent terminals. However, a physiological role for the GABAB receptors on excitatory nerve endings has not been established. In this study, we have found a brief, heterosynaptic depression of excitatory synaptic transmission in the CA1 region of the hippocampal slice following short-lasting repetitive stimulation and determined that this inhibition is mediated by presynaptic GABAB receptors. The inhibition of GABA uptake greatly enhanced both the presynaptic action of GABA and the slow GABAB-mediated inhibitory postsynaptic current. Transmitter uptake was also found to regulate the "spill-over" of GABA at conventional GABAA synapses. These results suggest that uptake mechanisms restrict the spatial range of both point-to-point synaptic transmission mediated by GABA and its action at a distance.
                Bookmark

                Author and article information

                Journal
                Physiol Rep
                Physiol Rep
                physreports
                phy2
                Physiological Reports
                Wiley Periodicals, Inc.
                2051-817X
                1 April 2014
                23 April 2014
                : 2
                : 4
                : e00278
                Affiliations
                [1 ]Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
                [2 ]Department of Physiology, University of Tarbiat Modares, Tehran, Iran
                [3 ]Department of Surgery (Division of Neurosurgery), University of Toronto, Toronto, Ontario, Canada
                [4 ]Department of Medicine (Division of Neurology), University of Toronto, Toronto, Ontario, Canada
                Author notes
                CorrespondenceLiang Zhang, Toronto Western Research Institute, University Health Network, 7KD, Room 407, Toronto Western Hospital, 60 Leonard Street, Toronto, Ontario, M5T 2S8 Canada. Tel: 416‐603‐5800 ex 2209 (lab) x2702 (office) Fax: 416‐603‐5745 E‐mail: liangz@ 123456uhnres.utorontoca
                Article
                phy2278
                10.1002/phy2.278
                4001873
                24771688
                e771cd6a-a598-4d6b-a1f3-8967d28cf0c2
                © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 February 2014
                : 06 March 2014
                Categories
                Original Research

                allosteric,eeg,epilepsy,hippocampus,kindling,mice,seizure,slices
                allosteric, eeg, epilepsy, hippocampus, kindling, mice, seizure, slices

                Comments

                Comment on this article