22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel and interesting Ophiocordyceps spp. ( Ophiocordycipitaceae, Hypocreales) with superficial perithecia from Thailand

      research-article
      1 , , 1 , 1 , 1 , 2
      Studies in Mycology
      CBS Fungal Biodiversity Centre
      Cryptic species, 7 new taxa, Ophiocordyceps, Taxonomy, Ophiocordyceps brunneinigra Tasanathai, Thanakitpipattana, Khonsanit & Luangsa-ard, O. brunneiperitheciata Tasanathai, Thanakitpipattana, Khonsanit & Luangsa-ard, O. geometridicola Tasanathai, Thanakitpipattana, Khonsanit & Luangsa-ard, O. multiperitheciata Tasanathai, Thanakitpipattana, Khonsanit & Luangsa-ard, O. pauciovoperitheciata Tasanathai, Thanakitpipattana, Khonsanit & Luangsa-ard, O. pseudoacicularis Tasanathai, Thanakitpipattana, Khonsanit & Luangsa-ard, O. spataforae Tasanathai, Thanakitpipattana, Khonsanit & Luangsa-ard

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ophiocordyceps is a heterogeneous, species-rich genus in the order Hypocreales ( Sordariomycetes, Ascomycota) that includes invertebrate-pathogenic taxa. In this study, seven new species in Ophiocordyceps producing superficial perithecia infecting various insect hosts (Lepidoptera, Hemiptera) are described from Thailand – Ophiocordyceps brunneinigra, O. brunneiperitheciata, O. geometridicola, O. multiperitheciata, O. pauciovoperitheciata, O. pseudoacicularis and O. spataforae. Phylogenetic analyses based on multigene loci comprising the large subunit of the ribosomal DNA (LSU), partial sequences of elongation factor 1-alpha (TEF) and the largest and second largest subunit of the RNA polymerase (RPB1, PRB2) strongly support these new species of Ophiocordyceps in the Ophiocordycipitaceae. They differ from species previously described species Ophiocordyceps acicularis, O. atewensis, O. cochlidiicola, and O. crinalis, in the shape and sizes of distinguishing characters such as perithecia, ascospores and conidia. We also report a new record of O. macroacicularis in Thailand.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Phylogenetic classification of Cordyceps and the clavicipitaceous fungi

          Cordyceps, comprising over 400 species, was historically classified in the Clavicipitaceae, based on cylindrical asci, thickened ascus apices and filiform ascospores, which often disarticulate into part-spores. Cordyceps was characterized by the production of well-developed often stipitate stromata and an ecology as a pathogen of arthropods and Elaphomyces with infrageneric classifications emphasizing arrangement of perithecia, ascospore morphology and host affiliation. To refine the classification of Cordyceps and the Clavicipitaceae, the phylogenetic relationships of 162 taxa were estimated based on analyses consisting of five to seven loci, including the nuclear ribosomal small and large subunits (nrSSU and nrLSU), the elongation factor 1α (tef1), the largest and the second largest subunits of RNA polymerase II (rpb1 and rpb2), β-tubulin (tub), and mitochondrial ATP6 (atp6). Our results strongly support the existence of three clavicipitaceous clades and reject the monophyly of both Cordyceps and Clavicipitaceae. Most diagnostic characters used in current classifications of Cordyceps (e.g., arrangement of perithecia, ascospore fragmentation, etc.) were not supported as being phylogenetically informative; the characters that were most consistent with the phylogeny were texture, pigmentation and morphology of stromata. Therefore, we revise the taxonomy of Cordyceps and the Clavicipitaceae to be consistent with the multi-gene phylogeny. The family Cordycipitaceae is validated based on the type of Cordyceps, C. militaris, and includes most Cordyceps species that possess brightly coloured, fleshy stromata. The new family Ophiocordycipitaceae is proposed based on Ophiocordyceps Petch, which we emend. The majority of species in this family produce darkly pigmented, tough to pliant stromata that often possess aperithecial apices. The new genus Elaphocordyceps is proposed for a subclade of the Ophiocordycipitaceae, which includes all species of Cordyceps that parasitize the fungal genus Elaphomyces and some closely related species that parasitize arthropods. The family Clavicipitaceae s. s. is emended and includes the core clade of grass symbionts (e.g., Balansia, Claviceps, Epichloë, etc.), and the entomopathogenic genus Hypocrella and relatives. In addition, the new genus Metacordyceps is proposed for Cordyceps species that are closely related to the grass symbionts in the Clavicipitaceae s. s. Metacordyceps includes teleomorphs linked to Metarhizium and other closely related anamorphs. Two new species are described, and lists of accepted names for species in Cordyceps, Elaphocordyceps, Metacordyceps and Ophiocordyceps are provided.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora.

            To critically examine the relationship between species recognized by phylogenetic and reproductive compatibility criteria, we applied phylogenetic species recognition (PSR) to the fungus in which biological species recognition (BSR) has been most comprehensively applied, the well-studied genus Neurospora. Four independent anonymous nuclear loci were characterized and sequenced from 147 individuals that were representative of all described outbreeding species of Neurospora. We developed a consensus-tree approach that identified monophyletic genealogical groups that were concordantly supported by the majority of the loci, or were well supported by at least one locus but not contradicted by any other locus. We recognized a total of eight phylogenetic species, five of which corresponded with the five traditional biological species, and three of which were newly discovered. Not only were phylogenetic criteria superior to traditional reproductive compatibility criteria in revealing the full species diversity of Neurospora, but also significant phylogenetic subdivisions were detected within some species. Despite previous suggestions of hybridization between N. crassa and N. intermedia in nature, and the fact that several putative hybrid individuals were included in this study, no molecular evidence in support of recent interspecific gene flow or the existence of true hybrids was observed. The sequence data from the four loci were combined and used to clarify how the species discovered by PSR were related. Although species-level clades were strongly supported, the phylogenetic relationships among species remained difficult to resolve, perhaps due to conflicting signals resulting from differential lineage sorting.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Purpureocillium, a new genus for the medically important Paecilomyces lilacinus.

              Paecilomyces lilacinus was described more than a century ago and is a commonly occurring fungus in soil. However, in the last decade this fungus has been increasingly found as the causal agent of infections in man and other vertebrates. Most cases of disease are described from patients with compromised immune systems or intraocular lens implants. In this study, we compared clinical isolates with strains isolated from soil, insects and nematodes using 18S rRNA gene, internal transcribed spacer (ITS) and partial translation elongation factor 1-α (TEF) sequences. Our data show that P. lilacinus is not related to Paecilomyces, represented by the well-known thermophilic and often pathogenic Paecilomyces variotii. The new genus name Purpureocillium is proposed for P. lilacinus and the new combination Purpureocillium lilacinum is made here. Furthermore, the examined Purpureocillium lilacinum isolated grouped in two clades based on ITS and partial TEF sequences. The ITS and TEF sequences of the Purpureocillium lilacinum isolates used for biocontrol of nematode pests are identical to those causing infections in (immunocompromised) humans. The use of high concentrations of Purpureocillium lilacinum spores for biocontrol poses a health risk in immunocompromised humans and more research is needed to determine the pathogenicity factors of Purpureocillium lilacinum. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Stud Mycol
                Stud. Mycol
                Studies in Mycology
                CBS Fungal Biodiversity Centre
                0166-0616
                1872-9797
                17 February 2018
                March 2018
                17 February 2018
                : 89
                : 125-142
                Affiliations
                [1 ]Microbe Interaction and Ecology Laboratory, Biodiversity and Biotechnological Resource Research Unit (BBR), BIOTEC, NSTDA, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
                [2 ]Department of Microbial Drugs, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
                Author notes
                [] Correspondence: J. Luangsa-ard jajen@ 123456biotec.or.th
                Article
                S0166-0616(18)30004-6
                10.1016/j.simyco.2018.02.001
                6002337
                29910519
                e7c00d24-67db-47fa-a15d-e0b513b635b3
                © 2018 Westerdijk Fungal Biodiversity Institute. Production and hosting by ELSEVIER B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Research Paper

                Plant science & Botany
                cryptic species,7 new taxa,ophiocordyceps,taxonomy,ophiocordyceps brunneinigra tasanathai,thanakitpipattana,khonsanit & luangsa-ard,o. brunneiperitheciata tasanathai,o. geometridicola tasanathai,o. multiperitheciata tasanathai,o. pauciovoperitheciata tasanathai,o. pseudoacicularis tasanathai,o. spataforae tasanathai

                Comments

                Comment on this article