Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Decellularized Cartilage May Be a Chondroinductive Material for Osteochondral Tissue Engineering

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extracellular matrix (ECM)-based materials are attractive for regenerative medicine in their ability to potentially aid in stem cell recruitment, infiltration, and differentiation without added biological factors. In musculoskeletal tissue engineering, demineralized bone matrix is widely used, but recently cartilage matrix has been attracting attention as a potentially chondroinductive material. The aim of this study was thus to establish a chemical decellularization method for use with articular cartilage to quantify removal of cells and analyze the cartilage biochemical content at various stages during the decellularization process, which included a physically devitalization step. To study the cellular response to the cartilage matrix, rat bone marrow-derived mesenchymal stem cells (rBMSCs) were cultured in cell pellets containing cells only (control), chondrogenic differentiation medium (TGF-β), chemically decellularized cartilage particles (DCC), or physically devitalized cartilage particles (DVC). The chemical decellularization process removed the vast majority of DNA and about half of the glycosaminoglycans (GAG) within the matrix, but had no significant effect on the amount of hydroxyproline. Most notably, the DCC group significantly outperformed TGF-β in chondroinduction of rBMSCs, with collagen II gene expression an order of magnitude or more higher. While DVC did not exhibit a chondrogenic response to the extent that DCC did, DVC had a greater down regulation of collagen I, collagen X and Runx2. A new protocol has been introduced for cartilage devitalization and decellularization in the current study, with evidence of chondroinductivity. Such bioactivity along with providing the ‘raw material’ building blocks of regenerating cartilage may suggest a promising role for DCC in biomaterials that rely on recruiting endogenous cell recruitment and differentiation for cartilage regeneration.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Statistical significance of quantitative PCR

          Background PCR has the potential to detect and precisely quantify specific DNA sequences, but it is not yet often used as a fully quantitative method. A number of data collection and processing strategies have been described for the implementation of quantitative PCR. However, they can be experimentally cumbersome, their relative performances have not been evaluated systematically, and they often remain poorly validated statistically and/or experimentally. In this study, we evaluated the performance of known methods, and compared them with newly developed data processing strategies in terms of resolution, precision and robustness. Results Our results indicate that simple methods that do not rely on the estimation of the efficiency of the PCR amplification may provide reproducible and sensitive data, but that they do not quantify DNA with precision. Other evaluated methods based on sigmoidal or exponential curve fitting were generally of both poor resolution and precision. A statistical analysis of the parameters that influence efficiency indicated that it depends mostly on the selected amplicon and to a lesser extent on the particular biological sample analyzed. Thus, we devised various strategies based on individual or averaged efficiency values, which were used to assess the regulated expression of several genes in response to a growth factor. Conclusion Overall, qPCR data analysis methods differ significantly in their performance, and this analysis identifies methods that provide DNA quantification estimates of high precision, robustness and reliability. These methods allow reliable estimations of relative expression ratio of two-fold or higher, and our analysis provides an estimation of the number of biological samples that have to be analyzed to achieve a given precision.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications.

            Damage of cartilage structures in the head and neck region as well as in orthopedic sites are frequently caused by trauma, tumor resection, or congenital defects. Despite a high demand in many clinical fields, until today, no adequate cartilage replacement matrix is available for these fields of application. Materials that are clinically applied for joint cartilage repair still need optimization due to difficult intraoperative handling and risk of early mechanical damage. We have developed and applied a novel chemical process to completely decellularize and sterilize human and porcine cartilage tissues (meniscus cartilage and nasal septum) to generate a new type of bioimplant matrix. To characterize this matrix and to determine the effect of the decellularization process, the content of denatured collagen (w(D)) and the content of glycosaminoglycans (GAGs) (w(G)) were determined. Possible cytotoxic effects and cellular compatibility of the matrix in vitro have been examined by seeding processed cartilage biomatrices with human primary chondrocytes as well as murine fibroblasts (L929). Vitality and state of metabolism of cells were measured using MTS assays. Both cell types adhered to scaffold surfaces and proliferated. No areas of growth inhibition or cytotoxic effects were detected. New synthesis of cartilage-specific extracellular matrix was observed. By histological staining, electron microscopy, and μCT analysis, an increase of matrix porosity, complete cell elimination, and high GAG removal were demonstrated. Being from natural-origin, processed xenogenic and allogeneic cartilage biomatrices are highly versatile with regard to shape, size, and biomechanics, making them promising candidates for various biomedical applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes.

              Acellular cartilage can provide a native extracellular matrix for cartilage engineering. However, it is difficult for cells to migrate into acellular cartilage because of its non-porous structure. The aim of this study is to establish a sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Cartilage from adult pig ear was cut into a circular cylinder with a diameter of approximately 6 mm and freeze-sectioned at thicknesses of 10 μm and 30 μm. The sheets were then decellularized and lyophilized. Chondrocytes isolated from newborn pig ear were expanded for 2 passages. The acellular sheets and chondrocytes were then stacked layer-by-layer, in a sandwich model, and cultured in dishes. After 4 weeks of cultivation, the constructs were then either maintained in culture for another 12 weeks or implanted subcutaneously in nude mouse. Histological analysis showed that cells were completely removed from cartilage sheets after decellularization. By re-seeding cells and stacking 20 layers of sheets together, a cylinder-shaped cell sheet was achieved. Cartilage-like tissues formed after 4 weeks of culture. Histological analyses showed the formation of cartilage with a typical lacunar structure. Cartilage formation was more efficient with 10 μm-thick sheets than with 30 μm sheets. Mature cartilage was achieved after 12 weeks of implantation, which was demonstrated by histology and confirmed by Safranin O, Toluidine blue and anti-type II collagen antibody staining. Furthermore, we achieved cartilage with a designed shape by pre-shaping the sheets prior to implantation. These results indicate that the sandwich model could be a useful model for engineering cartilage in vitro and in vivo. Copyright © 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                12 May 2015
                2015
                : 10
                : 5
                : e0121966
                Affiliations
                [1 ]University of Kansas Medical Center, Kansas City, Kansas, United States of America
                [2 ]Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, United States of America
                [3 ]Orbis Biosciences, Kansas City, Kansas, United States of America
                [4 ]Children’s Mercy Hospital, Cardiac Surgery Research Lab, Ward Family Center for Congenital Heart Disease, Kansas City, Missouri, United States of America
                [5 ]Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, United States of America
                [6 ]Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, United States of America
                University of Pittsburgh, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AJS ECB SCD GLC RAH CJB MSD. Performed the experiments: AJS ECB SCD. Analyzed the data: AJS ECB SCD. Contributed reagents/materials/analysis tools: GLC RAH CJB MSD. Wrote the paper: AJS ECB SCD GLC RAH CJB MSD.

                Article
                PONE-D-14-44366
                10.1371/journal.pone.0121966
                4428768
                25965981
                e8257423-8c5b-4497-8017-889d1d067370
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 2 October 2014
                : 10 February 2015
                Page count
                Figures: 7, Tables: 0, Pages: 13
                Funding
                This work was supported by grants from the State of Kansas (R01 AR056347), the National Institutes of Health (R01 DE022472), a National Science Foundation Graduate Research Fellowship (NSF0064451) (ECB), and the NIGMS Pre-doctoral Biotechnology Training Grant Program (T32 GM-08359) (SCD). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article