65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Alterations in cell cycle regulators have been implicated in human malignancies including breast cancer. PD 0332991 is an orally active, highly selective inhibitor of the cyclin D kinases (CDK)4 and CDK6 with ability to block retinoblastoma (Rb) phosphorylation in the low nanomolar range. To identify predictors of response, we determined the in vitro sensitivity to PD 0332991 across a panel of molecularly characterized human breast cancer cell lines.

          Methods

          Forty-seven human breast cancer and immortalized cell lines representing the known molecular subgroups of breast cancer were treated with PD 0332991 to determine IC 50 values. These data were analyzed against baseline gene expression data to identify genes associated with PD 0332991 response.

          Results

          Cell lines representing luminal estrogen receptor-positive (ER+) subtype (including those that are HER2 amplified) were most sensitive to growth inhibition by PD 0332991 while nonluminal/basal subtypes were most resistant. Analysis of variance identified 450 differentially expressed genes between sensitive and resistant cells. pRb and cyclin D 1 were elevated and CDKN2A (p16) was decreased in the most sensitive lines. Cell cycle analysis showed G 0/G 1 arrest in sensitive cell lines and Western blot analysis demonstrated that Rb phosphorylation is blocked in sensitive lines but not resistant lines. PD 0332991 was synergistic with tamoxifen and trastuzumab in ER+ and HER2-amplified cell lines, respectively. PD 0332991 enhanced sensitivity to tamoxifen in cell lines with conditioned resistance to ER blockade.

          Conclusions

          These studies suggest a role for CDK4/6 inhibition in some breast cancers and identify criteria for patient selection in clinical studies of PD 0332991.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer Statistics, 2008

          Each year, the American Cancer Society estimates the number of new cancer cases and deaths expected in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival based on incidence data from the National Cancer Institute, Centers for Disease Control and Prevention, and the North American Association of Central Cancer Registries and mortality data from the National Center for Health Statistics. Incidence and death rates are age-standardized to the 2000 US standard million population. A total of 1,437,180 new cancer cases and 565,650 deaths from cancer are projected to occur in the United States in 2008. Notable trends in cancer incidence and mortality include stabilization of incidence rates for all cancer sites combined in men from 1995 through 2004 and in women from 1999 through 2004 and a continued decrease in the cancer death rate since 1990 in men and since 1991 in women. Overall cancer death rates in 2004 compared with 1990 in men and 1991 in women decreased by 18.4% and 10.5%, respectively, resulting in the avoidance of over a half million deaths from cancer during this time interval. This report also examines cancer incidence, mortality, and survival by site, sex, race/ethnicity, education, geographic area, and calendar year, as well as the proportionate contribution of selected sites to the overall trends. Although much progress has been made in reducing mortality rates, stabilizing incidence rates, and improving survival, cancer still accounts for more deaths than heart disease in persons under age 85 years. Further progress can be accelerated by supporting new discoveries and by applying existing cancer control knowledge across all segments of the population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors.

            A generalized method for analyzing the effects of multiple drugs and for determining summation, synergism and antagonism has been proposed. The derived, generalized equations are based on kinetic principles. The method is relatively simple and is not limited by whether the dose-effect relationships are hyperbolic or sigmoidal, whether the effects of the drugs are mutually exclusive or nonexclusive, whether the ligand interactions are competitive, noncompetitive or uncompetitive, whether the drugs are agonists or antagonists, or the number of drugs involved. The equations for the two most widely used methods for analyzing synergism, antagonism and summation of effects of multiple drugs, the isobologram and fractional product concepts, have been derived and been shown to have limitations in their applications. These two methods cannot be used indiscriminately. The equations underlying these two methods can be derived from a more generalized equation previously developed by us (59). It can be shown that the isobologram is valid only for drugs whose effects are mutually exclusive, whereas the fractional product method is valid only for mutually nonexclusive drugs which have hyperbolic dose-effect curves. Furthermore, in the isobol method, it is laborious to find proper combinations of drugs that would produce an iso-effective curve, and the fractional product method tends to give indication of synergism, since it underestimates the summation of the effect of mutually nonexclusive drugs that have sigmoidal dose-effect curves. The method described herein is devoid of these deficiencies and limitations. The simplified experimental design proposed for multiple drug-effect analysis has the following advantages: It provides a simple diagnostic plot (i.e., the median-effect plot) for evaluating the applicability of the data, and provides parameters that can be directly used to obtain a general equation for the dose-effect relation; the analysis which involves logarithmic conversion and linear regression can be readily carried out with a simple programmable electronic calculator and does not require special graph paper or tables; and the simplicity of the equation allows flexibility of application and the use of a minimum number of data points. This method has been used to analyze experimental data obtained from enzymatic, cellular and animal systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6.

              A pharmacological approach to inhibition of cyclin-dependent kinases 4 and 6 (Cdk4/6) using highly selective small molecule inhibitors has the potential to provide novel cancer therapies for clinical use. Achieving high levels of selectivity for Cdk4/6, versus other ATP-dependent kinases, presents a significant challenge. The pyrido[2,3-d]pyrimidin-7-one template provides an effective platform for the inhibition of a broad cross-section of kinases, including Cdks. It is now demonstrated that the modification of pyrido[2,3-d]pyrimidin-7-ones to include a 2-aminopyridine side chain at the C2-position provides inhibitors with exquisite selectivity for Cdk4/6 in vitro. This selectivity profile is recapitulated in cells where the most selective inhibitors create a G(1) block at concentrations up to 100-fold the IC(50) for cell proliferation. On the basis of its selectivity profile and pharmacokinetic profile, compound 43 (PD 0332991) was identified as a drug candidate for the treatment of cancer.
                Bookmark

                Author and article information

                Journal
                Breast Cancer Res
                Breast Cancer Research : BCR
                BioMed Central
                1465-5411
                1465-542X
                2009
                29 October 2009
                : 11
                : 5
                : R77
                Affiliations
                [1 ]Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine at UCLA, 10833 Le Conte Ave, 11-934 Factor Bldg, Los Angeles, CA 90095, USA
                [2 ]Pfizer Global Research and Development, Pfizer Inc., 10724 Science Center Drive, San Diego, CA 92121, USA
                [3 ]Pfizer Oncology BU, Clinical Development, Pfizer Inc., Via Lorenteggio 257, Milan 20152, Italy
                Article
                bcr2419
                10.1186/bcr2419
                2790859
                19874578
                e8a32801-a139-4879-a91c-b2b064e4cd3e
                Copyright ©2009 Finn et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 June 2009
                : 2 July 2009
                : 7 September 2009
                : 29 October 2009
                Categories
                Research article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article