144
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Functional Wnt Signaling Is Increased in Idiopathic Pulmonary Fibrosis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease, characterized by distorted lung architecture and loss of respiratory function. Alveolar epithelial cell injury and hyperplasia, enhanced extracellular matrix deposition, and (myo)fibroblast activation are features of IPF. Wnt/β-catenin signaling has been shown to determine epithelial cell fate during development. As aberrant reactivation of developmental signaling pathways has been suggested to contribute to IPF pathogenesis, we hypothesized that Wnt/β-catenin signaling is activated in epithelial cells in IPF. Thus, we quantified and localized the expression and activity of the Wnt/β-catenin pathway in IPF.

          Methodology/Principal Findings

          The expression of Wnt1, 3a, 7b, and 10b, the Wnt receptors Fzd1-4, Lrp5-6, as well as the intracellular signal transducers Gsk-3β, β-catenin, Tcf1, 3, 4, and Lef1 was analyzed in IPF and transplant donor lungs by quantitative real-time (q)RT-PCR. Wnt1, 7b and 10b, Fzd2 and 3, β-catenin, and Lef1 expression was significantly increased in IPF. Immunohistochemical analysis localized Wnt1, Wnt3a, β-catenin, and Gsk-3β expression largely to alveolar and bronchial epithelium. This was confirmed by qRT-PCR of primary alveolar epithelial type II (ATII) cells, demonstrating a significant increase of Wnt signaling in ATII cells derived from IPF patients. In addition, Western blot analysis of phospho-Gsk-3β, phospho-Lrp6, and β-catenin, and qRT-PCR of the Wnt target genes cyclin D1, Mmp 7, or Fibronectin 1 demonstrated increased functional Wnt/β-catenin signaling in IPF compared with controls. Functional in vitro studies further revealed that Wnt ligands induced lung epithelial cell proliferation and (myo)fibroblast activation and collagen synthesis.

          Conclusions/Significance

          Our study demonstrates that the Wnt/β-catenin pathway is expressed and operative in adult lung epithelium. Increased Wnt/β-catenin signaling may be involved in epithelial cell injury and hyperplasia, as well as impaired epithelial-mesenchymal cross-talk in IPF. Thus, modification of Wnt signaling may represent a therapeutic option in IPF.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy.

          Idiopathic pulmonary fibrosis is a progressive and usually fatal lung disease characterized by fibroblast proliferation and extracellular matrix remodeling, which result in irreversible distortion of the lung's architecture. Although the pathogenetic mechanisms remain to be determined, the prevailing hypothesis holds that fibrosis is preceded and provoked by a chronic inflammatory process that injures the lung and modulates lung fibrogenesis, leading to the end-stage fibrotic scar. However, there is little evidence that inflammation is prominent in early disease, and it is unclear whether inflammation is relevant to the development of the fibrotic process. Evidence suggests that inflammation does not play a pivotal role. Inflammation is not a prominent histopathologic finding, and epithelial injury in the absence of ongoing inflammation is sufficient to stimulate the development of fibrosis. In addition, the inflammatory response to a lung fibrogenic insult is not necessarily related to the fibrotic response. Clinical measurements of inflammation fail to correlate with stage or outcome, and potent anti-inflammatory therapy does not improve outcome. This review presents a growing body of evidence suggesting that idiopathic pulmonary fibrosis involves abnormal wound healing in response to multiple, microscopic sites of ongoing alveolar epithelial injury and activation associated with the formation of patchy fibroblast-myofibroblast foci, which evolve to fibrosis. Progress in understanding the fibrogenic mechanisms in the lung is likely to yield more effective therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation.

            Multiple signaling pathways, including Wnt signaling, participate in animal development, stem cell biology, and human cancer. Although many components of the Wnt pathway have been identified, unresolved questions remain as to the mechanism by which Wnt binding to its receptors Frizzled and Low-density lipoprotein receptor-related protein 6 (LRP6) triggers downstream signaling events. With live imaging of vertebrate cells, we show that Wnt treatment quickly induces plasma membrane-associated LRP6 aggregates. LRP6 aggregates are phosphorylated and can be detergent-solubilized as ribosome-sized multiprotein complexes. Phospho-LRP6 aggregates contain Wnt-pathway components but no common vesicular traffic markers except caveolin. The scaffold protein Dishevelled (Dvl) is required for LRP6 phosphorylation and aggregation. We propose that Wnts induce coclustering of receptors and Dvl in LRP6-signalosomes, which in turn triggers LRP6 phosphorylation to promote Axin recruitment and beta-catenin stabilization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Wnt signaling in disease and in development.

              Roel Nusse (2005)
              The highly conserved Wnt secreted proteins are critical mediators of cell-to-cell signaling during development of animals. Recent biochemical and genetic analyses have led to significant insight into understanding how Wnt signals work. The catalogue of Wnt signaling components has exploded. We now realize that multiple extracellular, cytoplasmic, and nuclear components modulate Wnt signaling. Moreover, receptor-ligand specificity and multiple feedback loops determine Wnt signaling outputs. It is also clear that Wnt signals are required for adult tissue maintenance. Perturbations in Wnt signaling cause human degenerative diseases as well as cancer.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2008
                14 May 2008
                : 3
                : 5
                : e2142
                Affiliations
                [1]Department of Medicine, University of Giessen Lung Center, University of Giessen, Giessen, Germany
                Monash University, Australia
                Author notes

                Conceived and designed the experiments: OE MK NB. Performed the experiments: MK NB EP IC MK. Analyzed the data: OE MK NB EP IC MK. Contributed reagents/materials/analysis tools: WS OE MK NB EP IC MK. Wrote the paper: OE MK.

                Article
                08-PONE-RA-03479R2
                10.1371/journal.pone.0002142
                2374879
                18478089
                e8c6497f-0a11-4a20-9d49-d4adb7b5c44e
                Königshoff et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 31 January 2008
                : 2 April 2008
                Page count
                Pages: 12
                Categories
                Research Article
                Pathology
                Respiratory Medicine
                Pathology/Molecular Pathology
                Respiratory Medicine/Interstitial Lung Diseases

                Uncategorized
                Uncategorized

                Comments

                Comment on this article