0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel Functional Genomics Approaches Bridging Neuroscience and Psychiatry

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The possibility of establishing a metric of individual genetic risk for a particular disease or trait has sparked the interest of the clinical and research communities, with many groups developing and validating genomic profiling methodologies for their potential application in clinical care. Current approaches for calculating genetic risk to specific psychiatric conditions consist of aggregating genome-wide association studies–derived estimates into polygenic risk scores, which broadly represent the number of inherited risk alleles for an individual. While the traditional approach for polygenic risk score calculation aggregates estimates of gene-disease associations, novel alternative approaches have started to consider functional molecular phenotypes that are closer to genetic variation and are less penalized by the multiple testing required in genome-wide association studies. Moving the focus from genotype-disease to genotype–gene regulation frameworks, these novel approaches incorporate prior knowledge regarding biological processes involved in disease and aggregate estimates for the association of genotypes and phenotypes using multi-omics data modalities. In this review, we discuss and list different functional genomics tools that can be used and integrated to inform researchers and clinicians for a better understanding and diagnosis of psychopathology. We suggest that these novel approaches can help generate biologically driven hypotheses for polygenic signals that can ultimately serve the clinical community as potential biomarkers of psychiatric disease susceptibility.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019

          Abstract The GWAS Catalog delivers a high-quality curated collection of all published genome-wide association studies enabling investigations to identify causal variants, understand disease mechanisms, and establish targets for novel therapies. The scope of the Catalog has also expanded to targeted and exome arrays with 1000 new associations added for these technologies. As of September 2018, the Catalog contains 5687 GWAS comprising 71673 variant-trait associations from 3567 publications. New content includes 284 full P-value summary statistics datasets for genome-wide and new targeted array studies, representing 6 × 109 individual variant-trait statistics. In the last 12 months, the Catalog's user interface was accessed by ∼90000 unique users who viewed >1 million pages. We have improved data access with the release of a new RESTful API to support high-throughput programmatic access, an improved web interface and a new summary statistics database. Summary statistics provision is supported by a new format proposed as a community standard for summary statistics data representation. This format was derived from our experience in standardizing heterogeneous submissions, mapping formats and in harmonizing content. Availability: https://www.ebi.ac.uk/gwas/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            LD Score regression distinguishes confounding from polygenicity in genome-wide association studies.

            Both polygenicity (many small genetic effects) and confounding biases, such as cryptic relatedness and population stratification, can yield an inflated distribution of test statistics in genome-wide association studies (GWAS). However, current methods cannot distinguish between inflation from a true polygenic signal and bias. We have developed an approach, LD Score regression, that quantifies the contribution of each by examining the relationship between test statistics and linkage disequilibrium (LD). The LD Score regression intercept can be used to estimate a more powerful and accurate correction factor than genomic control. We find strong evidence that polygenicity accounts for the majority of the inflation in test statistics in many GWAS of large sample size.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The GTEx Consortium atlas of genetic regulatory effects across human tissues

              (2020)
              The Genotype-Tissue Expression (GTEx) project was established to characterize genetic effects on the transcriptome across human tissues and to link these regulatory mechanisms to trait and disease associations. Here, we present analyses of the version 8 data, examining 15,201 RNA-sequencing samples from 49 tissues of 838 postmortem donors. We comprehensively characterize genetic associations for gene expression and splicing in cis and trans, showing that regulatory associations are found for almost all genes, and describe the underlying molecular mechanisms and their contribution to allelic heterogeneity and pleiotropy of complex traits. Leveraging the large diversity of tissues, we provide insights into the tissue specificity of genetic effects and show that cell type composition is a key factor in understanding gene regulatory mechanisms in human tissues.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biol Psychiatry Glob Open Sci
                Biol Psychiatry Glob Open Sci
                Biological Psychiatry Global Open Science
                Elsevier
                2667-1743
                07 August 2022
                July 2023
                07 August 2022
                : 3
                : 3
                : 351-361
                Affiliations
                [a ]Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
                [b ]Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
                [c ]Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
                [d ]Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec, Canada
                [e ]Douglas Mental Health University Institute, Montreal, Quebec, Canada
                Author notes
                []Address correspondence to Cecilia Flores, Ph.D. cecilia.flores@ 123456mcgill.ca
                []Patricia P. Silveira, M.D., Ph.D. patricia.silveira@ 123456mcgill.ca
                Article
                S2667-1743(22)00092-1
                10.1016/j.bpsgos.2022.07.005
                10382709
                e947fbb0-3891-4e9c-af4c-c87c76182e1f
                © 2022 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 27 January 2022
                : 15 July 2022
                : 20 July 2022
                Categories
                Review

                functional genomics,gene expression,neuroscience,polygenic risk score,psychiatry

                Comments

                Comment on this article