25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors exerting several functions in development and metabolism. The physiological functions of PPARdelta remain elusive. By using a CRE-Lox recombination approach, we generated an animal model for muscle-specific PPARdelta overexpression to investigate the role of PPARdelta in this tissue. Muscle-specific PPARdelta overexpression results in a profound change in fiber composition due to hyperplasia and/or shift to more oxidative fiber and, as a consequence, leads to the increase of both enzymatic activities and genes implicated in oxidative metabolism. These changes in muscle are accompanied by a reduction of body fat mass, mainly due to a large reduction of adipose cell size. Furthermore, we demonstrate that endurance exercise promotes an accumulation of PPARdelta protein in muscle of wild-type animals. Collectively, these results suggest that PPARdelta plays an important role in muscle development and adaptive response to environmental changes, such as training exercise. They strongly support the idea that activation of PPARdelta could be beneficial in prevention of metabolic disorders, such as obesity or type 2 diabetes.

          Related collections

          Author and article information

          Journal
          FASEB J
          FASEB journal : official publication of the Federation of American Societies for Experimental Biology
          Wiley
          1530-6860
          0892-6638
          Dec 2003
          : 17
          : 15
          Affiliations
          [1 ] Inserm U470, Centre de Biochimie, Parc Valrose, Université de Nice-Sophia Antipolis, 06108 Nice cedex 2, France.
          Article
          03-0269fje
          10.1096/fj.03-0269fje
          14525942
          e94a4270-15d7-4254-bf1a-dc643de29c65
          History

          Comments

          Comment on this article