12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Incretin secretion in humans is under the influence of cannabinoid receptors

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mechanisms regulating incretin secretion are not fully known. Human obesity is associated with altered incretin secretion and elevated endocannabinoid levels. Since cannabinoid receptors (CBRs) are expressed on incretin-secreting cells in rodents, we hypothesized that endocannabinoids are involved in the regulation of incretin secretion. We compared plasma glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) responses during oral glucose tolerance test (OGTT) in 20 lean and 20 obese participants from the Baltimore Longitudinal Study of Aging (BLSA). Next, we recruited 20 healthy men to evaluate GIP and GLP-1 responses during OGTT after administering placebo or nabilone (CBR agonist) in a randomized, double-blind, crossover fashion. Compared with the BLSA lean group, the BLSA obese group had significantly higher fasting and post-OGTT GIP levels, but similar fasting GLP-1 and significantly lower post-OGTT GLP-1 levels. In the nabilone vs. placebo study, when compared with placebo, nabilone resulted in significantly elevated post-dose fasting GIP levels and post-OGTT GIP levels, but no change in post-dose fasting GLP-1 levels together with significantly lower post-OGTT GLP-1 levels. Glucose levels were not different with both interventions. We conclude that elevated GIP levels in obesity are likely a consequence of increased endocannabinoid levels. CBRs exert tonic control over GIP secretion, which may have a homeostatic effect in suppressing GLP-1 secretion. This raises the possibility that gut hormones are influenced by endocannabinoids.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Use and abuse of HOMA modeling.

          Homeostatic model assessment (HOMA) is a method for assessing beta-cell function and insulin resistance (IR) from basal (fasting) glucose and insulin or C-peptide concentrations. It has been reported in >500 publications, 20 times more frequently for the estimation of IR than beta-cell function. This article summarizes the physiological basis of HOMA, a structural model of steady-state insulin and glucose domains, constructed from physiological dose responses of glucose uptake and insulin production. Hepatic and peripheral glucose efflux and uptake were modeled to be dependent on plasma glucose and insulin concentrations. Decreases in beta-cell function were modeled by changing the beta-cell response to plasma glucose concentrations. The original HOMA model was described in 1985 with a formula for approximate estimation. The computer model is available but has not been as widely used as the approximation formulae. HOMA has been validated against a variety of physiological methods. We review the use and reporting of HOMA in the literature and give guidance on its appropriate use (e.g., cohort and epidemiological studies) and inappropriate use (e.g., measuring beta-cell function in isolation). The HOMA model compares favorably with other models and has the advantage of requiring only a single plasma sample assayed for insulin and glucose. In conclusion, the HOMA model has become a widely used clinical and epidemiological tool and, when used appropriately, it can yield valuable data. However, as with all models, the primary input data need to be robust, and the data need to be interpreted carefully.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus.

            In type-2 diabetes, the overall incretin effect is reduced. The present investigation was designed to compare insulinotropic actions of exogenous incretin hormones (gastric inhibitory peptide [GIP] and glucagon-like peptide 1 [GLP-1] [7-36 amide]) in nine type-2 diabetic patients (fasting plasma glucose 7.8 mmol/liter; hemoglobin A1c 6.3 +/- 0.6%) and in nine age- and weight-matched normal subjects. Synthetic human GIP (0.8 and 2.4 pmol/kg.min over 1 h each), GLP-1 [7-36 amide] (0.4 and 1.2 pmol/kg.min over 1 h each), and placebo were administered under hyperglycemic clamp conditions (8.75 mmol/liter) in separate experiments. Plasma GIP and GLP-1 [7-36 amide] concentrations (radioimmunoassay) were comparable to those after oral glucose with the low, and clearly supraphysiological with the high infusion rates. Both GIP and GLP-1 [7-36 amide] dose-dependently augmented insulin secretion (insulin, C-peptide) in both groups (P < 0.05). With GIP, the maximum effect in type-2 diabetic patients was significantly lower (by 54%; P < 0.05) than in normal subjects. With GLP-1 [7-36 amide] type-2 diabetic patients reached 71% of the increments in C-peptide of normal subjects (difference not significant). Glucagon was lowered during hyperglycemic clamps in normal subjects, but not in type-2 diabetic patients, and further by GLP-1 [7-36 amide] in both groups (P < 0.05), but not by GIP. In conclusion, in mild type-2 diabetes, GLP-1 [7-36 amide], in contrast to GIP, retains much of its insulinotropic activity. It also lowers glucagon concentrations.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Correct homeostasis model assessment (HOMA) evaluation uses the computer program.

                Bookmark

                Author and article information

                Contributors
                Journal
                American Journal of Physiology-Endocrinology and Metabolism
                American Journal of Physiology-Endocrinology and Metabolism
                American Physiological Society
                0193-1849
                1522-1555
                September 01 2017
                September 01 2017
                : 313
                : 3
                : E359-E366
                Affiliations
                [1 ]Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
                Article
                10.1152/ajpendo.00080.2017
                5625085
                28655715
                e96ccce5-8eb5-40b3-a7c8-35000afbe897
                © 2017
                History

                Comments

                Comment on this article