16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0-S6), an extracellular N terminus, and an intracellular (S9-S10) C terminus.

      Proceedings of the National Academy of Sciences of the United States of America
      Amino Acid Sequence, Animals, COS Cells, Cell Membrane, chemistry, metabolism, Cytosol, Female, Humans, In Vitro Techniques, Large-Conductance Calcium-Activated Potassium Channel alpha Subunits, Large-Conductance Calcium-Activated Potassium Channel beta Subunits, Large-Conductance Calcium-Activated Potassium Channels, Models, Molecular, Molecular Sequence Data, Oocytes, Potassium Channels, genetics, Potassium Channels, Calcium-Activated, Protein Biosynthesis, Protein Conformation, Recombinant Proteins, Transfection

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Large conductance voltage- and Ca2+-dependent K+ (MaxiK) channels show sequence similarities to voltage-gated ion channels. They have a homologous S1-S6 region, but are unique at the N and C termini. At the C terminus, MaxiK channels have four additional hydrophobic regions (S7-S10) of unknown topology. At the N terminus, we have recently proposed a new model where MaxiK channels have an additional transmembrane region (S0) that confers beta subunit regulation. Using transient expression of epitope tagged MaxiK channels, in vitro translation, functional, and "in vivo" reconstitution assays, we now show that MaxiK channels have seven transmembrane segments (S0-S6) at the N terminus and a S1-S6 region that folds in a similar way as in voltage-gated ion channels. Further, our results indicate that hydrophobic segments S9-S10 in the C terminus are cytoplasmic and unequivocally demonstrate that S0 forms an additional transmembrane segment leading to an exoplasmic N terminus.

          Related collections

          Author and article information

          Comments

          Comment on this article