8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Looking beyond Typical Treatments for Atypical Mycobacteria

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The genus Mycobacterium comprises not only the deadliest of bacterial pathogens, Mycobacterium tuberculosis, but several other pathogenic species, including M. avium and M. abscessus. The incidence of infections caused by atypical or nontuberculous mycobacteria (NTM) has been steadily increasing, and is associated with a panoply of diseases, including pulmonary, soft-tissue, or disseminated infections. The treatment for NTM disease is particularly challenging, due to its long duration, to variability in bacterial susceptibility profiles, and to the lack of evidence-based guidelines. Treatment usually consists of a combination of at least three drugs taken from months to years, often leading to severe secondary effects and a high chance of relapse. Therefore, new treatment approaches are clearly needed. In this review, we identify the main limitations of current treatments and discuss different alternatives that have been put forward in recent years, with an emphasis on less conventional therapeutics, such as antimicrobial peptides, bacteriophages, iron chelators, or host-directed therapies. We also review new forms of the use of old drugs, including the repurposing of non-antibacterial molecules and the incorporation of antimicrobials into ionic liquids. We aim to stimulate advancements in testing these therapies in relevant models, in order to provide clinicians and patients with useful new tools with which to treat these devastating diseases.

          Related collections

          Most cited references188

          • Record: found
          • Abstract: found
          • Article: not found

          The expanding scope of antimicrobial peptide structures and their modes of action.

          Antimicrobial peptides (AMPs) are an integral part of the innate immune system that protect a host from invading pathogenic bacteria. To help overcome the problem of antimicrobial resistance, cationic AMPs are currently being considered as potential alternatives for antibiotics. Although extremely variable in length, amino acid composition and secondary structure, all peptides can adopt a distinct membrane-bound amphipathic conformation. Recent studies demonstrate that they achieve their antimicrobial activity by disrupting various key cellular processes. Some peptides can even use multiple mechanisms. Moreover, several intact proteins or protein fragments are now being shown to have inherent antimicrobial activity. A better understanding of the structure-activity relationships of AMPs is required to facilitate the rational design of novel antimicrobial agents. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The association between sterilizing activity and drug distribution into tuberculosis lesions

            Finding new treatment-shortening antibiotics to improve cure rates and curb the alarming emergence of drug resistance is the major objective of tuberculosis (TB) drug development. Using a MALDI mass spectrometry imaging suite in a biosafety containment facility, we show that the key sterilizing drugs rifampicin and pyrazinamide efficiently penetrate the sites of TB infection in lung lesions. Rifampicin even accumulates in necrotic caseum, a critical lesion site where persisting tubercle bacilli reside 1 . In contrast, moxifloxacin which is active in vitro against persisters, a sub-population of Mycobacterium tuberculosis that persists in specific niches under drug pressure, and achieved treatment shortening in mice 2 , does not diffuse well in caseum, concordant with its failure to shorten therapy in recent clinical trials. We also suggest that such differential spatial distribution and kinetics of accumulation in lesions may create temporal and spatial windows of monotherapy in specific niches, allowing the gradual development of multidrug resistant TB. We propose an alternative working model to prioritize new antibiotic regimens based on quantitative and spatial distribution of TB drugs in the major lesion types found in human lungs. The finding that lesion penetration contributes to treatment outcome has wide implications for TB.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria.

              Within the past 10 years, treatment and diagnostic guidelines for nontuberculous mycobacteria have been recommended by the American Thoracic Society (ATS) and the Infectious Diseases Society of America (IDSA). Moreover, the Clinical and Laboratory Standards Institute (CLSI) has published and recently (in 2011) updated recommendations including suggested antimicrobial and susceptibility breakpoints. The CLSI has also recommended the broth microdilution method as the gold standard for laboratories performing antimicrobial susceptibility testing of nontuberculous mycobacteria. This article reviews the laboratory, diagnostic, and treatment guidelines together with established and probable drug resistance mechanisms of the nontuberculous mycobacteria.
                Bookmark

                Author and article information

                Journal
                Antibiotics (Basel)
                Antibiotics (Basel)
                antibiotics
                Antibiotics
                MDPI
                2079-6382
                03 January 2020
                January 2020
                : 9
                : 1
                : 18
                Affiliations
                [1 ]i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; clara.bento@ 123456i3s.up.pt (C.M.B.); tania.silva@ 123456ibmc.up.pt (T.S.)
                [2 ]IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
                [3 ]ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
                Author notes
                [* ]Correspondence: sgomes@ 123456ibmc.up.pt
                Author information
                https://orcid.org/0000-0001-9019-7334
                https://orcid.org/0000-0001-7657-2118
                https://orcid.org/0000-0002-6087-1487
                Article
                antibiotics-09-00018
                10.3390/antibiotics9010018
                7168257
                31947883
                ea032e7d-b151-4d63-8e1b-71d76ce8c0e9
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 16 December 2019
                : 31 December 2019
                Categories
                Review

                nontuberculous mycobacteria,antibiotics,ionic liquids,iron chelators,antimicrobial peptides,bacteriophages,host-directed therapies

                Comments

                Comment on this article