9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Visually Driven Neuropil Activity and Information Encoding in Mouse Primary Visual Cortex

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cortical neuropil modulations recorded by calcium imaging reflect the activity of large aggregates of axo-dendritic processes and synaptic compartments from a large number of neurons. The organization of this activity impacts neuronal firing but is not well understood. Here we used in vivo 2-photon imaging with Oregon Green Bapta (OGB) and GCaMP6s to study neuropil visual responses to moving gratings in layer 2/3 of mouse area V1. We found neuropil responses to be strongly modulated and more reliable than neighboring somatic activity. Furthermore, stimulus independent modulations in neuropil activity, i.e., noise correlations, were highly coherent across the cortical surface, up to distances of at least 200 μm. Pairwise neuropil-to-neuropil-patch noise correlation strength was much higher than cell-to-cell noise correlation strength and depended strongly on brain state, decreasing in quiet wakefulness relative to light anesthesia. The profile of neuropil noise correlation strength decreased gently with distance, dropping by ~11% at a distance of 200 μm. This was comparatively slower than the profile of cell-to-cell noise correlations, which dropped by ~23% at 200 μm. Interestingly, in spite of the “salt & pepper” organization of orientation and direction encoding across mouse V1 neurons, populations of neuropil patches, even of moderately large size (radius ~100 μm), showed high accuracy for discriminating perpendicularly moving gratings. This was commensurate to the accuracy of corresponding cell populations. The dynamic, stimulus dependent, nature of neuropil activity further underscores the need to carefully separate neuropil from cell soma activity in contemporary imaging studies.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          The variable discharge of cortical neurons: implications for connectivity, computation, and information coding.

          Cortical neurons exhibit tremendous variability in the number and temporal distribution of spikes in their discharge patterns. Furthermore, this variability appears to be conserved over large regions of the cerebral cortex, suggesting that it is neither reduced nor expanded from stage to stage within a processing pathway. To investigate the principles underlying such statistical homogeneity, we have analyzed a model of synaptic integration incorporating a highly simplified integrate and fire mechanism with decay. We analyzed a "high-input regime" in which neurons receive hundreds of excitatory synaptic inputs during each interspike interval. To produce a graded response in this regime, the neuron must balance excitation with inhibition. We find that a simple integrate and fire mechanism with balanced excitation and inhibition produces a highly variable interspike interval, consistent with experimental data. Detailed information about the temporal pattern of synaptic inputs cannot be recovered from the pattern of output spikes, and we infer that cortical neurons are unlikely to transmit information in the temporal pattern of spike discharge. Rather, we suggest that quantities are represented as rate codes in ensembles of 50-100 neurons. These column-like ensembles tolerate large fractions of common synaptic input and yet covary only weakly in their spike discharge. We find that an ensemble of 100 neurons provides a reliable estimate of rate in just one interspike interval (10-50 msec). Finally, we derived an expression for the variance of the neural spike count that leads to a stable propagation of signal and noise in networks of neurons-that is, conditions that do not impose an accumulation or diminution of noise. The solution implies that single neurons perform simple algebra resembling averaging, and that more sophisticated computations arise by virtue of the anatomical convergence of novel combinations of inputs to the cortical column from external sources.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex.

            Neurons in the cerebral cortex are organized into anatomical columns, with ensembles of cells arranged from the surface to the white matter. Within a column, neurons often share functional properties, such as selectivity for stimulus orientation; columns with distinct properties, such as different preferred orientations, tile the cortical surface in orderly patterns. This functional architecture was discovered with the relatively sparse sampling of microelectrode recordings. Optical imaging of membrane voltage or metabolic activity elucidated the overall geometry of functional maps, but is averaged over many cells (resolution >100 microm). Consequently, the purity of functional domains and the precision of the borders between them could not be resolved. Here, we labelled thousands of neurons of the visual cortex with a calcium-sensitive indicator in vivo. We then imaged the activity of neuronal populations at single-cell resolution with two-photon microscopy up to a depth of 400 microm. In rat primary visual cortex, neurons had robust orientation selectivity but there was no discernible local structure; neighbouring neurons often responded to different orientations. In area 18 of cat visual cortex, functional maps were organized at a fine scale. Neurons with opposite preferences for stimulus direction were segregated with extraordinary spatial precision in three dimensions, with columnar borders one to two cells wide. These results indicate that cortical maps can be built with single-cell precision.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              An Interior-Point Method for Large-Scale -Regularized Least Squares

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neural Circuits
                Front Neural Circuits
                Front. Neural Circuits
                Frontiers in Neural Circuits
                Frontiers Media S.A.
                1662-5110
                21 July 2017
                2017
                : 11
                : 50
                Affiliations
                [1] 1Department of Neurology, Brigham and Women's Hospital Boston, MA, United States
                [2] 2Harvard Medical School Boston, MA, United States
                [3] 3Department of Neurology, Baylor College of Medicine Houston, TX, United States
                [4] 4Veterans Administration Hospital Boston, MA, United States
                Author notes

                Edited by: Edward S. Ruthazer, McGill University, Canada

                Reviewed by: Tobias Rose, Max Planck Institute of Neurobiology (MPG), Germany; Carey Y. L. Huh, University of California, Irvine, United States

                *Correspondence: Sangkyun Lee lee.sangkyun@ 123456gmail.com

                †These authors have contributed equally to this work.

                Article
                10.3389/fncir.2017.00050
                5519560
                28785207
                ea0fbfd6-007f-474a-b7ba-caf65e803d58
                Copyright © 2017 Lee, Meyer, Park and Smirnakis.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 March 2017
                : 30 June 2017
                Page count
                Figures: 7, Tables: 0, Equations: 15, References: 41, Pages: 18, Words: 13339
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Award ID: R21 NS088457
                Funded by: Simons Foundation 10.13039/100000893
                Categories
                Neuroscience
                Original Research

                Neurosciences
                neuropil,visual cortex,population codes,visual system,information encoding
                Neurosciences
                neuropil, visual cortex, population codes, visual system, information encoding

                Comments

                Comment on this article