285
views
0
recommends
+1 Recommend
1 collections
    16
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Persistent DNA damage-induced premature senescence alters the functional features of human bone marrow mesenchymal stem cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human mesenchymal stem cells (hMSCs) are adult multipotent stem cells located in various tissues, including the bone marrow. In contrast to terminally differentiated somatic cells, adult stem cells must persist and function throughout life to ensure tissue homeostasis and repair. For this reason, they must be equipped with DNA damage responses able to maintain genomic integrity while ensuring their lifelong persistence. Evaluation of hMSC response to genotoxic insults is of great interest considering both their therapeutic potential and their physiological functions. This study aimed to investigate the response of human bone marrow MSCs to the genotoxic agent Actinomycin D (ActD), a well-known anti-tumour drug. We report that hMSCs react by undergoing premature senescence driven by a persistent DNA damage response activation, as hallmarked by inhibition of DNA synthesis, p21 and p16 protein expression, marked Senescent Associated β-galactosidase activity and enlarged γH2AX foci co-localizing with 53BP1 protein. Senescent hMSCs overexpress several senescence-associated secretory phenotype (SASP) genes and promote motility of lung tumour and osteosarcoma cell lines in vitro. Our findings disclose a multifaceted consequence of ActD treatment on hMSCs that on the one hand helps to preserve this stem cell pool and prevents damaged cells from undergoing neoplastic transformation, and on the other hand alters their functional effects on the surrounding tissue microenvironment in a way that might worsen their tumour-promoting behaviour.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Persistent DNA damage signaling triggers senescence-associated inflammatory cytokine secretion

          Cellular senescence suppresses cancer by stably arresting the proliferation of damaged cells1. Paradoxically, senescent cells also secrete factors that alter tissue microenvironments2. The pathways regulating this secretion are unknown. We show that damaged human cells develop persistent chromatin lesions bearing hallmarks of DNA double-strand breaks (DSBs), which initiate increased secretion of inflammatory cytokines such as interleukin-6 (IL-6). Cytokine secretion occurred only after establishment of persistent DNA damage signaling, usually associated with senescence, not after transient DNA damage responses (DDR). Initiation and maintenance of this cytokine response required the DDR proteins ATM, NBS1 and CHK2, but not the cell cycle arrest enforcers p53 and pRb. ATM was also essential for IL-6 secretion during oncogene-induced senescence and by damaged cells that bypass senescence. Further, DDR activity and IL-6 were elevated in human cancers, and ATM-depletion suppressed the ability of senescent cells to stimulate IL-6-dependent cancer cell invasiveness. Thus, in addition to orchestrating cell cycle checkpoints and DNA repair, a novel and important role of the DDR is to allow damaged cells to communicate their compromised state to the surrounding tissue.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Living on a break: cellular senescence as a DNA-damage response.

            Cellular senescence is associated with ageing and cancer in vivo and has a proven tumour-suppressive function. Common to both ageing and cancer is the generation of DNA damage and the engagement of the DNA-damage response pathways. In this Review, the diverse mechanisms that lead to DNA-damage generation and the activation of DNA-damage-response signalling pathways are discussed, together with the evidence for their contribution to the establishment and maintenance of cellular senescence in the context of organismal ageing and cancer development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype.

              Cellular senescence suppresses cancer by forcing potentially oncogenic cells into a permanent cell cycle arrest. Senescent cells also secrete growth factors, proteases, and inflammatory cytokines, termed the senescence-associated secretory phenotype (SASP). Much is known about pathways that regulate the senescence growth arrest, but far less is known about pathways that regulate the SASP. We previously showed that DNA damage response (DDR) signalling is essential, but not sufficient, for the SASP, which is restrained by p53. Here, we delineate another crucial SASP regulatory pathway and its relationship to the DDR and p53. We show that diverse senescence-inducing stimuli activate the stress-inducible kinase p38MAPK in normal human fibroblasts. p38MAPK inhibition markedly reduced the secretion of most SASP factors, constitutive p38MAPK activation was sufficient to induce an SASP, and p53 restrained p38MAPK activation. Further, p38MAPK regulated the SASP independently of the canonical DDR. Mechanistically, p38MAPK induced the SASP largely by increasing NF-κB transcriptional activity. These findings assign p38MAPK a novel role in SASP regulation--one that is necessary, sufficient, and independent of previously described pathways.
                Bookmark

                Author and article information

                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                jcmm
                Journal of Cellular and Molecular Medicine
                BlackWell Publishing Ltd (Oxford, UK )
                1582-1838
                1582-4934
                April 2015
                26 January 2015
                : 19
                : 4
                : 734-743
                Affiliations
                [a ]Department of Clinical and Biological Sciences, University of Turin Orbassano, Turin, Italy
                [b ]Department of Oncology, University of Turin Orbassano, Turin, Italy
                Author notes
                * Correspondence to: Claudia GIACHINO, Ph.D.,, Department of Clinical and Biological Sciences, University of Turin, Italy, Regione Gonzole 10, Orbassano, Turin 10043, Italy., Tel.: +390116705425, Fax: +390119038639, E-mail claudia.giachino@ 123456unito.it
                [#]

                Equal contribution.

                Article
                10.1111/jcmm.12387
                4395188
                25619736
                ea150253-e1d8-414e-b5ad-c6496a3a4d8c
                © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 January 2014
                : 24 June 2014
                Categories
                Original Articles

                Molecular medicine
                actinomycin d,dna damage,mesenchymal stem cell,senescence-associated secretory phenotype,stress-induced premature senescence

                Comments

                Comment on this article