Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dissociating neuronal gamma-band activity from cranial and ocular muscle activity in EEG

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          EEG is the most common technique for studying neuronal dynamics of the human brain. However, electromyogenic artifacts from cranial muscles and ocular muscles executing involuntary microsaccades compromise estimates of neuronal activity in the gamma band (>30 Hz). Yet, the relative contributions and practical consequences of these artifacts remain unclear. Here, we systematically dissected the effects of these different artifacts on studying visual gamma-band activity with EEG on the sensor and source level, and show strategies to cope with these confounds. We found that cranial muscle activity prevented a direct investigation of neuronal gamma-band activity at the sensor level. Furthermore, we found prolonged microsaccade-related artifacts beyond the well-known transient EEG confounds. We then show that if electromyogenic artifacts are carefully accounted for, the EEG nonetheless allows for studying visual gamma-band activity even at the sensor level. Furthermore, we found that source analysis based on spatial filtering does not only map the EEG signals to the cortical space of interest, but also efficiently accounts for cranial and ocular muscle artifacts. Together, our results clarify the relative contributions and characteristics of myogenic artifacts confounding visual gamma-band activity in EEG, and provide practical guidelines for future experiments.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          Spectrum estimation and harmonic analysis

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks.

            Gamma frequency oscillations are thought to provide a temporal structure for information processing in the brain. They contribute to cognitive functions, such as memory formation and sensory processing, and are disturbed in some psychiatric disorders. Fast-spiking, parvalbumin-expressing, soma-inhibiting interneurons have a key role in the generation of these oscillations. Experimental analysis in the hippocampus and the neocortex reveals that synapses among these interneurons are highly specialized. Computational analysis further suggests that synaptic specialization turns interneuron networks into robust gamma frequency oscillators.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain.

              This paper presents a new method for localizing the electric activity in the brain based on multichannel surface EEG recordings. In contrast to the models presented up to now the new method does not assume a limited number of dipolar point sources nor a distribution on a given known surface, but directly computes a current distribution throughout the full brain volume. In order to find a unique solution for the 3-dimensional distribution among the infinite set of different possible solutions, the method assumes that neighboring neurons are simultaneously and synchronously activated. The basic assumption rests on evidence from single cell recordings in the brain that demonstrates strong synchronization of adjacent neurons. In view of this physiological consideration the computational task is to select the smoothest of all possible 3-dimensional current distributions, a task that is a common procedure in generalized signal processing. The result is a true 3-dimensional tomography with the characteristic that localization is preserved with a certain amount of dispersion, i.e., it has a relatively low spatial resolution. The new method, which we call Low Resolution Electromagnetic Tomography (LORETA) is illustrated with two different sets of evoked potential data, the first showing the tomography of the P100 component to checkerboard stimulation of the left, right, upper and lower hemiretina, and the second showing the results for the auditory N100 component and the two cognitive components CNV and P300. A direct comparison of the tomography results with those obtained from fitting one and two dipoles illustrates that the new method provides physiologically meaningful results while dipolar solutions fail in many situations. In the case of the cognitive components, the method offers new hypotheses on the location of higher cognitive functions in the brain.
                Bookmark

                Author and article information

                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                18 May 2013
                10 July 2013
                2013
                : 7
                : 338
                Affiliations
                [1] 1Centre for Integrative Neuroscience, University of Tübingen Tübingen, Germany
                [2] 2MEG-Center, University of Tübingen Tübingen, Germany
                Author notes

                Edited by: Leon Y. Deouell, The Hebrew University of Jerusalem, Israel

                Reviewed by: Leon Y. Deouell, The Hebrew University of Jerusalem, Israel; Joachim Gross, University of Glasgow, UK; Suresh Muthukumaraswamy, Cardiff University, UK

                *Correspondence: Joerg F. Hipp, Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 47, 72076 Tübingen, Germany e-mail: joerg.hipp@ 123456cin.uni-tuebingen.de
                Article
                10.3389/fnhum.2013.00338
                3706727
                23847508
                eac6cf5f-d6f1-450d-8fe9-628333fb21ef
                Copyright © 2013 Hipp and Siegel.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 02 May 2013
                : 15 June 2013
                Page count
                Figures: 10, Tables: 0, Equations: 0, References: 65, Pages: 11, Words: 8344
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                beamforming,electroencephalography,gamma band activity,oscillation,saccadic spike artifact,source analysis,vision

                Comments

                Comment on this article