24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Vulnerability to epidemic malaria in the highlands of Lake Victoria basin: the role of climate change/variability, hydrology and socio-economic factors

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Association between climate variability and malaria epidemics in the East African highlands.

          The causes of the recent reemergence of Plasmodium falciparum epidemic malaria in the East African highlands are controversial. Regional climate changes have been invoked as a major factor; however, assessing the impact of climate in malaria resurgence is difficult due to high spatial and temporal climate variability and the lack of long-term data series on malaria cases from different sites. Climate variability, defined as short-term fluctuations around the mean climate state, may be epidemiologically more relevant than mean temperature change, but its effects on malaria epidemics have not been rigorously examined. Here we used nonlinear mixed-regression model to investigate the association between autoregression (number of malaria outpatients during the previous time period), seasonality and climate variability, and the number of monthly malaria outpatients of the past 10-20 years in seven highland sites in East Africa. The model explained 65-81% of the variance in the number of monthly malaria outpatients. Nonlinear and synergistic effects of temperature and rainfall on the number of malaria outpatients were found in all seven sites. The net variance in the number of monthly malaria outpatients caused by autoregression and seasonality varied among sites and ranged from 18 to 63% (mean=38.6%), whereas 12-63% (mean=36.1%) of variance is attributed to climate variability. Our results suggest that there was a high spatial variation in the sensitivity of malaria outpatient number to climate fluctuations in the highlands, and that climate variability played an important role in initiating malaria epidemics in the East African highlands.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            Climate Dynamics of the Tropics

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda.

              As highland regions of Africa historically have been considered free of malaria, recent epidemics in these areas have raised concerns that high elevation malaria transmission may be increasing. Hypotheses about the reasons for this include changes in climate, land use and demographic patterns. We investigated the effect of land use change on malaria transmission in the south-western highlands of Uganda. From December 1997 to July 1998, we compared mosquito density, biting rates, sporozoite rates and entomological inoculation rates between 8 villages located along natural papyrus swamps and 8 villages located along swamps that have been drained and cultivated. Since vegetation changes affect evapotranspiration patterns and, thus, local climate, we also investigated differences in temperature, humidity and saturation deficit between natural and cultivated swamps. We found that on average all malaria indices were higher near cultivated swamps, although differences between cultivated and natural swamps were not statistically significant. However, maximum and minimum temperature were significantly higher in communities bordering cultivated swamps. In multivariate analysis using a generalized estimating equation approach to Poisson regression, the average minimum temperature of a village was significantly associated with the number of Anopheles gambiae s.l. per house after adjustment for potential confounding variables. It appears that replacement of natural swamp vegetation with agricultural crops has led to increased temperatures, which may be responsible for elevated malaria transmission risk in cultivated areas.
                Bookmark

                Author and article information

                Journal
                Climatic Change
                Climatic Change
                Springer Nature
                0165-0009
                1573-1480
                April 2010
                October 2009
                : 99
                : 3-4
                : 473-497
                Article
                10.1007/s10584-009-9670-7
                eac6ef31-32e5-4ac4-b8b6-f98d4f3c37a7
                © 2010
                History

                Comments

                Comment on this article