0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Partial Sums on the Ultra-Wide Word RAM

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We consider the classic partial sums problem on the ultra-wide word RAM model of computation. This model extends the classic \(w\)-bit word RAM model with special ultrawords of length \(w^2\) bits that support standard arithmetic and boolean operation and scattered memory access operations that can access \(w\) (non-contiguous) locations in memory. The ultra-wide word RAM model captures (and idealizes) modern vector processor architectures. Our main result is a new in-place data structure for the partial sum problem that only stores a constant number of ultraword in addition to the input and supports operations in doubly logarithmic time. This matches the best known time bounds for the problem (among polynomial space data structures) while improving the space from superlinear to a constant number of ultrawords. Our results are based on a simple and elegant in-place word RAM data structure, known as the Fenwick tree. Our main technical contribution is a new efficient parallel ultra-wide word RAM implementation of the Fenwick tree, which is likely of independent interest.

          Related collections

          Author and article information

          Journal
          27 August 2019
          Article
          1908.10159
          eadff36a-1327-4723-a86a-bae955ebe5ff

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          cs.DS

          Data structures & Algorithms
          Data structures & Algorithms

          Comments

          Comment on this article