22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Right Ventricular Outflow Tract Septal Pacing Is Superior to Right Ventricular Apical Pacing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The effects of right ventricular apical pacing (RVAP) and right ventricular outflow tract (RVOT) septal pacing on atrial and ventricular electrophysiology have not been thoroughly compared.

          Methods and Results

          To identify a more favorable pacing strategy with fewer adverse effects, 80 patients who had complete atrioventricular block with normal cardiac function and who were treated with either RVAP (n=42) or RVOT septal pacing (n=38) were recruited after an average of 2 years of follow‐up. The data from electrocardiography and echocardiography performed before pacemaker implantation and at the end of follow‐up were collected. The patients in the RVOT septal pacing and RVAP groups showed similar demographic and clinical characteristics before pacing treatments. After a mean follow‐up of 2 years, the final maximum P‐wave duration; P‐wave dispersion; Q‐, R‐, and S‐wave complex duration; left atrial volume index; left ventricular end‐systolic diameter; ratio of transmitral early diastolic filling velocity to mitral annular early diastolic velocity; and interventricular mechanical delay in the RVOT septal pacing group were significantly less than those in the RVAP group ( P<0.05). The final left ventricular ejection fraction of the RVOT septal pacing group was significantly higher than that of the RVAP group ( P<0.05).

          Conclusions

          Compared with RVAP, RVOT septal pacing has fewer adverse effects regarding atrial electrical activity and structure in patients with normal cardiac function.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction.

          Dual-chamber (DDDR) pacing preserves AV synchrony and may reduce heart failure (HF) and atrial fibrillation (AF) compared with ventricular (VVIR) pacing in sinus node dysfunction (SND). However, DDDR pacing often results in prolonged QRS durations (QRSd) as the result of right ventricular stimulation, and ventricular desynchronization may result. The effect of pacing-induced ventricular desynchronization in patients with normal baseline QRSd is unknown. Baseline QRSd was obtained from 12-lead ECGs before pacemaker implantation in MOST, a 2010-patient, 6-year, randomized trial of DDDR versus VVIR pacing in SND. Cumulative percent ventricular paced (Cum%VP) was determined from stored pacemaker data. Baseline QRSd 40%) and VVIR (HR 2.56 [95% CI, 1.48 to 4.43] for Cum%VP >80%). The risk of AF increased linearly with Cum%VP from 0% to 85% in both groups (DDDR, HR 1.36 [95% CI, 1.09, 1.69]; VVIR, HR 1.21 [95% CI 1.02, 1.43], for each 25% increase in Cum%VP). Model results were unaffected by adjustment for known baseline predictors of HF hospitalization and AF. Ventricular desynchronization imposed by ventricular pacing even when AV synchrony is preserved increases the risk of HF hospitalization and AF in SND with normal baseline QRSd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Permanent, direct His-bundle pacing: a novel approach to cardiac pacing in patients with normal His-Purkinje activation.

            Direct His-bundle pacing (DHBP) produces synchronous ventricular depolarization and improved cardiac function relative to apical pacing. Although it has been performed transiently in the electrophysiology laboratory and persistently in open-chested canines, permanent DHBP in humans has not been achieved. A total of 18 patients aged 69+/-10 years who had a history of chronic atrial fibrillation, dilated cardiomyopathy, and normal activation (ie, QRS< or =120 ms) were screened for permanent DHBP using an electrophysiology catheter. In 14 patients, the His bundle could be reliably stimulated. Of these 14, permanent DHBP using a fixed screw-in lead was successful in 12 patients. Radiofrequency atrioventricular node ablation was performed in patients exhibiting a fast ventricular response. All patients received single-chamber rate-responsive pacemakers. Acute pacing thresholds were 2.4+/-1.0 V at a pulse duration of 0.5 ms. Lead complications included exit block requiring reoperative adjustment and gross lead dislodgment. Echocardiographic improvement in heart function was shown by reductions in the left ventricular end-diastolic dimension from 59+/-8 to 52+/-6 mm (P
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              P-wave dispersion: a novel predictor of paroxysmal atrial fibrillation.

              The prolongation of intraatrial and interatrial conduction time and the inhomogeneous propagation of sinus impulses are well known electrophysiologic characteristics in patients with paroxysmal atrial fibrillation (AF). Previous studies have demonstrated that individuals with a clinical history of paroxysmal AF show a significantly increased P-wave duration in 12-lead surface electrocardiograms (ECG) and signal-averaged ECG recordings. The inhomogeneous and discontinuous atrial conduction in patients with paroxysmal AF has recently been studied with a new ECG index, P-wave dispersion. P-wave dispersion is defined as the difference between the longest and the shortest P-wave duration recorded from multiple different surface ECG leads. Up to now the most extensive clinical evaluation of P-wave dispersion has been performed in the assessment of the risk for AF in patients without apparent heart disease, in hypertensives, in patients with coronary artery disease and in patients undergoing coronary artery bypass surgery. P-wave dispersion has proven to be a sensitive and specific ECG predictor of AF in the various clinical settings. However, no electrophysiologic study has proven up to now the suspected relationship between the dispersion in the atrial conduction times and P-wave dispersion. The methodology used for the calculation of P-wave dispersion is not standardized and more efforts to improve the reliability and reproducibility of P-wave dispersion measurements are needed. P-wave dispersion constitutes a recent contribution to the field of noninvasive electrocardiology and seems to be quite promising in the field of AF prediction.
                Bookmark

                Author and article information

                Journal
                J Am Heart Assoc
                J Am Heart Assoc
                ahaoa
                jah3
                Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease
                Blackwell Publishing Ltd
                2047-9980
                April 2015
                20 April 2015
                : 4
                : 4
                : e001777
                Affiliations
                Department of Cardiology, First Affiliated Hospital of Soochow University, Suzhou, China (C.Z., J.S., H.L., X.Y.)
                Department of Electrocardiography, First Affiliated Hospital of Soochow University, Suzhou, China (X.H., Y.L.)
                Department of Echocardiography, First Affiliated Hospital of Soochow University, Suzhou, China (C.Z., X.S.)
                Author notes
                Correspondence to: Cao Zou, MD, Department of Cardiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China. E‐mail: nkzc75@ 123456163.com
                Article
                jah3942
                10.1161/JAHA.115.001777
                4579934
                25896891
                eb94b083-20e6-4841-8218-6d22542defe9
                © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

                This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 06 January 2015
                : 27 March 2015
                Categories
                Original Research
                Arrhythmia and Electrophysiology

                Cardiovascular Medicine
                cardiovascular diseases,electrophysiology,pacemaker
                Cardiovascular Medicine
                cardiovascular diseases, electrophysiology, pacemaker

                Comments

                Comment on this article