5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The ADAMTS/Fibrillin Connection: Insights into the Biological Functions of ADAMTS10 and ADAMTS17 and Their Respective Sister Proteases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Secreted a disintegrin-like and metalloprotease with thrombo spondin type 1 motif (ADAMTS) proteases play crucial roles in tissue development and homeostasis. The biological and pathological functions of ADAMTS proteases are determined broadly by their respective substrates and their interactions with proteins in the pericellular and extracellular matrix. For some ADAMTS proteases, substrates have been identified and substrate cleavage has been implicated in tissue development and in disease. For other ADAMTS proteases, substrates were discovered in vitro, but the role of these proteases and the consequences of substrate cleavage in vivo remains to be established. Mutations in ADAMTS10 and ADAMTS17 cause Weill–Marchesani syndrome (WMS), a congenital syndromic disorder that affects the musculoskeletal system (short stature, pseudomuscular build, tight skin), the eyes (lens dislocation), and the heart (heart valve abnormalities). WMS can also be caused by mutations in fibrillin-1 ( FBN1), which suggests that ADAMTS10 and ADAMTS17 cooperate with fibrillin-1 in a common biological pathway during tissue development and homeostasis. Here, we compare and contrast the biochemical properties of ADAMTS10 and ADAMTS17 and we summarize recent findings indicating potential biological functions in connection with fibrillin microfibrils. We also compare ADAMTS10 and ADAMTS17 with their respective sister proteases, ADAMTS6 and ADAMTS19; both were recently linked to human disorders distinct from WMS. Finally, we propose a model for the interactions and roles of these four ADAMTS proteases in the extracellular matrix.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Biological functions of fucose in mammals

          Fucose is a 6-deoxy hexose in the l -configuration found in a large variety of different organisms. In mammals, fucose is incorporated into N -glycans, O -glycans and glycolipids by 13 fucosyltransferases, all of which utilize the nucleotide-charged form, GDP-fucose, to modify targets. Three of the fucosyltransferases, FUT8, FUT12/POFUT1 and FUT13/POFUT2, are essential for proper development in mice. Fucose modifications have also been implicated in many other biological functions including immunity and cancer. Congenital mutations of a Golgi apparatus localized GDP-fucose transporter causes leukocyte adhesion deficiency type II, which results in severe developmental and immune deficiencies, highlighting the important role fucose plays in these processes. Additionally, changes in levels of fucosylated proteins have proven as useful tools for determining cancer diagnosis and prognosis. Chemically modified fucose analogs can be used to alter many of these fucose dependent processes or as tools to better understand them. In this review, we summarize the known roles of fucose in mammalian physiology and pathophysiology. Additionally, we discuss recent therapeutic advances for cancer and other diseases that are a direct result of our improved understanding of the role that fucose plays in these systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear weapons-related radiocarbon.

            Normal structure and function of the lung parenchyma depend upon elastic fibers. Amorphous elastin is biochemically stable in vitro, and may provide a metabolically stable structural framework for the lung parenchyma. To test the metabolic stability of elastin in the normal human lung parenchyma, we have (a) estimated the time elapsed since the synthesis of the protein through measurement of aspartic acid racemization and (b) modeled the elastin turnover through measurement of the prevalence of nuclear weapons-related 14C. Elastin purified by a new technique from normal lung parenchyma was hydrolyzed; then the prevalences of D-aspartate and 14C were measured by gas chromatography and accelerator-mass spectrometry, respectively. D-aspartate increased linearly with age; Kasp (1.76 x 10(-3) yr(-1) was similar to that previously found for extraordinarily stable human tissues, indicating that the age of lung parenchymal elastin corresponded with the age of the subject. Radiocarbon prevalence data also were consistent with extraordinary metabolic stability of elastin; the calculated mean carbon residence time in elastin was 74 yr (95% confidence limits, 40-174 yr). These results indicate that airspace enlargement characteristic of "aging lung" is not associated with appreciable new synthesis of lung parenchymal elastin. The present study provides the first tissue-specific evaluation of turnover of an extracellular matrix component in humans and underscores the potential importance of elastin for maintenance of normal lung structure. Most importantly, the present work provides a foundation for strategies to directly evaluate extracellular matrix injury and repair in diseases of lung (especially pulmonary emphysema), vascular tissue, and skin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ADAMTS proteins in human disorders

              ADAMTS proteins are a superfamily of 26 secreted molecules comprising two related, but distinct families. ADAMTS proteases are zinc metalloendopeptidases, most of whose substrates are extracellular matrix (ECM) components, whereas ADAMTS-like proteins lack a metalloprotease domain, reside in the ECM and have regulatory roles vis-à-vis ECM assembly and/or ADAMTS activity. Evolutionary conservation and expansion of ADAMTS proteins in mammals is suggestive of crucial embryologic or physiological roles in humans. Indeed, Mendelian disorders or birth defects resulting from naturally occurring ADAMTS2, ADAMTS3, ADAMTS10, ADAMTS13, ADAMTS17, ADAMTS20, ADAMTSL2 and ADAMTSL4 mutations as well as numerous phenotypes identified in genetically engineered mice have revealed ADAMTS participation in major biological pathways. Important roles have been identified in a few acquired conditions. ADAMTS5 is unequivocally implicated in pathogenesis of osteoarthritis via degradation of aggrecan, a major structural proteoglycan in cartilage. ADAMTS7 is strongly associated with coronary artery disease and promotes atherosclerosis. Autoantibodies to ADAMTS13 lead to a platelet coagulopathy, thrombotic thrombocytopenic purpura, which is similar to that resulting from ADAMTS13 mutations. ADAMTS proteins have numerous potential connections to other human disorders that were identified by genome-wide association studies. Here, we review inherited and acquired human disorders in which ADAMTS proteins participate, and discuss progress and prospects in therapeutics.
                Bookmark

                Author and article information

                Journal
                Biomolecules
                Biomolecules
                biomolecules
                Biomolecules
                MDPI
                2218-273X
                12 April 2020
                April 2020
                : 10
                : 4
                : 596
                Affiliations
                Orthopaedic Research Laboratories, Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; stylianoszafeirios.karoulias@ 123456mssm.edu (S.Z.K.); nandaraj.taye@ 123456mssm.edu (N.T.); sarah.stanley@ 123456icahn.mssm.edu (S.S.)
                Author notes
                [* ]Correspondence: dirk.hubmacher@ 123456mssm.edu ; Tel.: +1-212-241-1625
                Author information
                https://orcid.org/0000-0002-4177-1114
                Article
                biomolecules-10-00596
                10.3390/biom10040596
                7226509
                32290605
                eba385ab-0a07-4e3a-bc61-3c008cbc0a36
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 03 March 2020
                : 09 April 2020
                Categories
                Review

                extracellular matrix,adamts proteases,fibrillin,microfibrils,weill-marchesani syndrome,short stature,lens dislocation

                Comments

                Comment on this article