41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting central melanocortin receptors: a promising novel approach for treating alcohol abuse disorders

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The melanocortin (MC) peptides are produced centrally by propiomelanocortin (POMC) neurons within the arcuate nucleus of the hypothalamus and act through five seven-transmembrane G-protein coupled melanocortin receptor (MCR) subtypes. The MC3R and MC4R subtypes, the most abundant central MCRs, are widely expressed in brain regions known to modulate neurobiological responses to ethanol, including regions of the hypothalamus and extended amygdala. Agouti-related protein (AgRP), also produced in the arcuate nucleus, is secreted in terminals expressing MCRs and functions as an endogenous MCR antagonist. This review highlights recent genetic and pharmacological findings that have implicated roles for the MC and AgRP systems in modulating ethanol consumption. Ethanol consumption is associated with significant alterations in the expression levels of various MC peptides/protein, which suggests that ethanol-induced perturbations of MC/AgRP signaling may modulate excessive ethanol intake. Consistently, MCR agonists decrease, and AgRP increases, ethanol consumption in mice. MCR agonists fail to blunt ethanol intake in mutant mice lacking the MC4R, suggesting that the protective effects of MCR agonists are modulated by the MC4R. Interestingly, recent evidence reveals that MCR agonists are more effective at blunting binge-like ethanol intake in mutant mice lacking the MC3R, suggesting that the MC3R has opposing effects on the MC4R. Finally, mutant mice lacking AgRP exhibit blunted voluntary and binge-like ethanol drinking, consistent with pharmacological studies. Collectively, these preclinical observations provide compelling evidence that compounds that target the MC system may provide therapeutic value for treating alcohol abuse disorders and that the utilization of currently available MC-targeting compounds- such as those being used to treat eating disorders- may be used as effective treatments to this end.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Effects of Naltrexone Sustained- Release/Bupropion Sustained-Release Combination Therapy on Body Weight and Glycemic Parameters in Overweight and Obese Patients With Type 2 Diabetes

          OBJECTIVE To assess the efficacy and safety of 32 mg naltrexone sustained-release (SR)/360 mg bupropion SR (NB) in overweight/obese individuals with type 2 diabetes with or without background oral antidiabetes drugs. RESEARCH DESIGN AND METHODS This was a 56-week, double-blind, placebo-controlled study in which 505 patients received standardized lifestyle intervention and were randomized 2:1 to NB or placebo. Coprimary end points were percent weight change and achievement of ≥5% weight loss. Secondary end points included achievement of HbA1c <7% (53 mmol/mol), achievement of weight loss ≥10%, and change in HbA1c, waist circumference, fasting blood glucose, and lipids. RESULTS In the modified intent-to-treat population (54% female, 80% Caucasian, and mean age 54 years, weight 106 kg, BMI 37 kg/m2, and HbA1c 8.0% [64 mmol/mol]), NB resulted in significantly greater weight reduction (−5.0 vs. −1.8%; P < 0.001) and proportion of patients achieving ≥5% weight loss (44.5 vs. 18.9%, P < 0.001) compared with placebo. NB also resulted in significantly greater HbA1c reduction (−0.6 vs. −0.1% [6.6 vs. 1.1 mmol/mol]; P < 0.001), percent of patients achieving HbA1c <7% (53 mmol/mol) (44.1 vs. 26.3%; P < 0.001), and improvement in triglycerides and HDL cholesterol compared with placebo. NB was associated with higher incidence of nausea (42.3 vs. 7.1%), constipation (17.7 vs. 7.1%), and vomiting (18.3 vs. 3.6%). No difference was observed between groups in the incidence of depression, suicidal ideation, or hypoglycemia. CONCLUSIONS NB therapy in overweight/obese patients with type 2 diabetes induced weight loss, which was associated with improvements in glycemic control and select cardiovascular risk factors and was generally well tolerated with a safety profile similar to that in patients without diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat.

            The melanocortin 4 receptor (MC4-R) plays a pivotal role in maintaining energy homeostasis in rodents and humans. For example, MC4-R deletion or mutation results in obesity, hyperphagia, and insulin resistance. Additionally, subsets of leptin-induced autonomic responses can be blocked by melanocortin receptor antagonism, suggesting that MC4-R-expressing neurons are downstream targets of leptin. However, the critical autonomic control sites expressing MC4-Rs are still unclear. In the present study, we systematically examined the distribution of MC4-R mRNA in the adult rat central nervous system, including the spinal cord, by using in situ hybridization histochemistry (ISHH) with a novel cRNA probe. Autonomic control sites expressing MC4-R mRNA in the hypothalamus included the anteroventral periventricular, ventromedial preoptic, median preoptic, paraventricular, dorsomedial, and arcuate nuclei. The subfornical organ, dorsal hypothalamic, perifornical, and posterior hypothalamic areas were also observed to express MC4-R mRNA. Within extrahypothalamic autonomic control sites, MC4-R-specific hybridization was evident in the infralimbic and insular cortices, bed nucleus of the stria terminalis, central nucleus of the amygdala, periaqueductal gray, lateral parabrachial nucleus, nucleus of the solitary tract, dorsal motor nucleus of the vagus (DMV), and intermediolateral nucleus of the spinal cord (IML). By using dual-label ISHH, we confirmed that the cells expressing MC4-R mRNA in the IML and DMV were autonomic preganglionic neurons as cells in both sites coexpressed choline acetyltransferase mRNA. The distribution of MC4-R mRNA is consistent with the proposed roles of central melanocortin systems in feeding and autonomic regulation. Copyright 2003 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rational design of a combination medication for the treatment of obesity.

              Existing obesity therapies are limited by safety concerns and modest efficacy reflecting a weight loss plateau. Here, we explore combination therapy with bupropion (BUP), a putative stimulator of melanocortin pathways, and an opioid antagonist, naltrexone (NAL), to antagonize an inhibitory feedback loop that limits sustained weight reduction. In vitro electrophysiologic experiments were conducted to determine the extent to which BUP+NAL stimulated hypothalamic pro-opiomelanocortin (POMC) neurons in mouse brain. A subsequent study further characterized the effect of combination BUP+NAL treatment on food intake in lean and obese mice. Finally, a randomized, blinded, placebo-controlled trial in obese adult subjects was conducted. Randomization included: BUP (300 mg) + NAL (50 mg), BUP (300 mg) + placebo (P), NAL (50 mg) + P or P+P for up to 24 weeks. BUP+NAL stimulated murine POMC neurons in vitro and caused a greater reduction in acute food intake than either monotherapy, an effect consistent with synergism. Combined BUP+NAL provided sustained weight loss without evidence of an efficacy plateau through 24 weeks of treatment. BUP+NAL completers diverged from NAL+P (P < 0.01) and P+P (P < 0.001) at week 16 and from BUP+P by week 24 (P < 0.05). The combination was also well tolerated. Translational studies indicated that BUP+NAL therapy produced synergistic weight loss which exceeded either BUP or NAL alone. These results supported the hypothesis that NAL, through blockade of beta-endorphin mediated POMC autoinhibition, prevents the classic weight loss plateau observed with monotherapies such as BUP. This novel treatment approach (BUP+NAL) holds promise for the treatment of obesity.\
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                03 June 2014
                2014
                : 8
                : 128
                Affiliations
                [1] 1Department of Psychology, University of North Carolina Chapel Hill, NC, USA
                [2] 2Bowles Center for Alcohol Studies, University of North Carolina Chapel Hill, NC, USA
                Author notes

                Edited by: Richard Lowell Bell, Indiana University School of Medicine, USA

                Reviewed by: Gregg E. Homanics, University of Pittsburgh, USA; Luigia Trabace, University of Foggia, Italy; Olivier George, The Scripps Research Institute, USA

                *Correspondence: Todd E. Thiele, Department of Psychology, University of North Carolina, Davie Hall, CB #3270, Chapel Hill, NC 27599-3270, USA e-mail: thiele@ 123456unc.edu

                This article was submitted to Neuropharmacology, a section of the journal Frontiers in Neuroscience.

                Article
                10.3389/fnins.2014.00128
                4042890
                ebe4e0b0-af83-4cb9-bbfd-7cb13297eb03
                Copyright © 2014 Olney, Navarro and Thiele.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 April 2014
                : 08 May 2014
                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 91, Pages: 9, Words: 8321
                Categories
                Pharmacology
                Review Article

                Neurosciences
                melanocortin,pomc,α-msh,agrp,mc3 receptor,mc4 receptor,ethanol
                Neurosciences
                melanocortin, pomc, α-msh, agrp, mc3 receptor, mc4 receptor, ethanol

                Comments

                Comment on this article