6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Inorganic Phosphate Modulates the Expression of the NaPi-2a Transporter in the trans-Golgi Network and the Interaction with PIST in the Proximal Tubule

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inorganic phosphate (Pi) homeostasis is maintained by the tight regulation of renal Pi excretion versus reabsorption rates that are in turn modulated by adjusting the number of Pi transporters (mainly NaPi-2a) in the proximal tubules. In response to some hormones and a high dietary Pi content, NaPi-2a is endocytosed and degraded in the lysosomes; however, we show here that some NaPi-2a molecules are targeted to the trans-Golgi network (TGN) during the endocytosis. In the TGN, NaPi-2a interacts with PIST (PDZ-domain protein interacting specifically with TC10), a TGN-resident PDZ-domain-containing protein. The extension of the interaction is proportional to the expression of NaPi-2a in the TGN, and, consistent with that, it is increased with a high Pi diet. When overexpressed in opossum kidney (OK) cells, PIST retains NaPi-2a in the TGN and inhibits Na-dependent Pi transport. Overexpression of PIST also prevents the adaptation of OK cells to a low Pi culture medium. Our data supports the view that NaPi-2a is subjected to retrograde trafficking from the plasma membrane to the TGN using one of the machineries involved in endosomal transport and explains the reported expression of NaPi-2a in the TGN.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Tracing the retrograde route in protein trafficking.

          Retrograde transport, in which proteins and lipids are shuttled between endosomes and biosynthetic/secretory compartments such as the Golgi apparatus, is crucial for a diverse range of cellular functions. Mechanistic studies that explore the molecular machinery involved in this retrograde trafficking route are shedding light on the functions of transport proteins and are providing fresh insights into possible new therapeutic directions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phosphate homeostasis and the renal-gastrointestinal axis.

            Transport of phosphate across intestinal and renal epithelia is essential for normal phosphate balance, yet we know less about the mechanisms and regulation of intestinal phosphate absorption than we do about phosphate handling by the kidney. Recent studies have provided strong evidence that the sodium-phosphate cotransporter NaPi-IIb is responsible for sodium-dependent phosphate absorption by the small intestine, and it might be that this protein can link changes in dietary phosphate to altered renal phosphate excretion to maintain phosphate balance. Evidence is also emerging that specific regions of the small intestine adapt differently to acute or chronic changes in dietary phosphate load and that phosphatonins inhibit both renal and intestinal phosphate transport. This review summarizes our current understanding of the mechanisms and control of intestinal phosphate absorption and how it may be related to renal phosphate reabsorption; it also considers the ways in which the gut could be targeted to prevent, or limit, hyperphosphatemia in chronic and end-stage renal failure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi.

              The principal mediators of renal phosphate (P(i)) reabsorption are the SLC34 family proteins NaPi-IIa and NaPi-IIc, localized to the proximal tubule (PT) apical membrane. Their abundance is regulated by circulatory factors and dietary P(i). Although their physiological importance has been confirmed in knockout animal studies, significant P(i) reabsorptive capacity remains, which suggests the involvement of other secondary-active P(i) transporters along the nephron. Here we show that a member of the SLC20 gene family (PiT-2) is localized to the brush-border membrane (BBM) of the PT epithelia and that its abundance, confirmed by Western blot and immunohistochemistry of rat kidney slices, is regulated by dietary P(i). In rats treated chronically on a high-P(i) (1.2%) diet, there was a marked decrease in the apparent abundance of PiT-2 protein in kidney slices compared with those from rats kept on a chronic low-P(i) (0.1%) diet. In Western blots of BBM from rats that were switched from a chronic low- to high-P(i) diet, NaPi-IIa showed rapid downregulation after 2 h; PiT-2 was also significantly downregulated at 24 h and NaPi-IIc after 48 h. For the converse dietary regime, NaPi-IIa showed adaptation within 8 h, whereas PiT-2 and NaPi-IIc showed a slower adaptive trend. Our findings suggest that PiT-2, until now considered as a ubiquitously expressed P(i) housekeeping transporter, is a novel mediator of P(i) reabsorption in the PT under conditions of acute P(i) deprivation, but with a different adaptive time course from NaPi-IIa and NaPi-IIc.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2013
                14 February 2013
                : 2013
                : 513932
                Affiliations
                1Department of Medicine, University of Colorado, and VA Eastern Colorado Health Care System, Denver, CO 80220, USA
                2Department of Toxicology, University of Zaragoza, 50013 Zaragoza, Spain
                Author notes
                *Victor Sorribas: sorribas@ 123456unizar.es

                Academic Editor: Habib Boukerche

                Article
                10.1155/2013/513932
                3586470
                23509734
                ec61e2f2-cc9d-400a-b0fd-d7324e89e2da
                Copyright © 2013 Miguel A. Lanaspa et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 August 2012
                : 8 January 2013
                Categories
                Research Article

                Comments

                Comment on this article