51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beyond Homozygosity Mapping: Family-Control analysis based on Hamming distance for prioritizing variants in exome sequencing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A major challenge in current exome sequencing in autosomal recessive (AR) families is the lack of an effective method to prioritize single-nucleotide variants (SNVs). AR families are generally too small for linkage analysis, and length of homozygous regions is unreliable for identification of causative variants. Various common filtering steps usually result in a list of candidate variants that cannot be narrowed down further or ranked. To prioritize shortlisted SNVs we consider each homozygous candidate variant together with a set of SNVs flanking it. We compare the resulting array of genotypes between an affected family member and a number of control individuals and argue that, in a family, differences between family member and controls should be larger for a pathogenic variant and SNVs flanking it than for a random variant. We assess differences between arrays in two individuals by the Hamming distance and develop a suitable test statistic, which is expected to be large for a causative variant and flanking SNVs. We prioritize candidate variants based on this statistic and applied our approach to six patients with known pathogenic variants and found these to be in the top 2 to 10 percentiles of ranks.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children.

          An efficient strategy for mapping human genes that cause recessive traits has been devised that uses mapped restriction fragment length polymorphisms (RFLPs) and the DNA of affected children from consanguineous marriages. The method involves detection of the disease locus by virtue of the fact that the adjacent region will preferentially be homozygous by descent in such inbred children. A single affected child of a first-cousin marriage is shown to contain the same total information about linkage as a nuclear family with three affected children. Calculations show that it should be practical to map a recessive disease gene by studying DNA from fewer than a dozen unrelated, affected inbred children, given a complete RFLP linkage map. The method should make it possible to map many recessive diseases for which it is impractical or impossible to collect adequate numbers of families with multiple affected offspring.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutations of POLR3A encoding a catalytic subunit of RNA polymerase Pol III cause a recessive hypomyelinating leukodystrophy.

            Leukodystrophies are a heterogeneous group of inherited neurodegenerative disorders characterized by abnormal white matter visible by brain imaging. It is estimated that at least 30% to 40% of individuals remain without a precise diagnosis despite extensive investigations. We mapped tremor-ataxia with central hypomyelination (TACH) to 10q22.3-23.1 in French-Canadian families and sequenced candidate genes within this interval. Two missense and one insertion mutations in five individuals with TACH were uncovered in POLR3A, which codes for the largest subunit of RNA polymerase III (Pol III). Because these families were mapped to the same locus as leukodystrophy with oligodontia (LO) and presented clinical and radiological overlap with individuals with hypomyelination, hypodontia and hypogonadotropic hypogonadism (4H) syndrome, we sequenced this gene in nine individuals with 4H and eight with LO. In total, 14 recessive mutations were found in 19 individuals with TACH, 4H, or LO, establishing that these leukodystrophies are allelic. No individual was found to carry two nonsense mutations. Immunoblots on 4H fibroblasts and on the autopsied brain of an individual diagnosed with 4H documented a significant decrease in POLR3A levels, and there was a more significant decrease in the cerebral white matter compared to that in the cortex. Pol III has a wide set of target RNA transcripts, including all nuclear-coded tRNA. We hypothesize that the decrease in POLR3A leads to dysregulation of the expression of certain Pol III targets and thereby perturbs cytoplasmic protein synthesis. This type of broad alteration in protein synthesis is predicted to occur in other leukoencephalopathies such as hypomyelinating leukodystrophy-3, caused by mutations in aminoacyl-tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1). Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recessive mutations in POLR3B, encoding the second largest subunit of Pol III, cause a rare hypomyelinating leukodystrophy.

              Mutations in POLR3A encoding the largest subunit of RNA polymerase III (Pol III) were found to be responsible for the majority of cases presenting with three clinically overlapping hypomyelinating leukodystrophy phenotypes. We uncovered in three cases without POLR3A mutation recessive mutations in POLR3B, which codes for the second largest subunit of Pol III. Mutations in genes coding for Pol III subunits are a major cause of childhood-onset hypomyelinating leukodystrophies with prominent cerebellar dysfunction, oligodontia, and hypogonadotropic hypogonadism. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                06 July 2015
                2015
                : 5
                : 12028
                Affiliations
                [1 ]Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine , Osaka, Japan
                [2 ]Department of Genome Informatics, Osaka University Graduate School of Medicine , Osaka, Japan
                [3 ]McGill University and Genome Québec Innovation Centre , Montréal, QC H3A 1B1, Canada
                [4 ]Department of Medical Biochemistry, Osaka University Graduate School of Medicine , Osaka, Japan
                [5 ]Institute of Psychology, Chinese Academy of Sciences, Beijing, China 100101; and Rockefeller University , New York, NY 10065, USA
                Author notes
                Article
                srep12028
                10.1038/srep12028
                5155624
                26143870
                ec884597-a145-4f30-9377-fc536f58764c
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 11 November 2014
                : 11 June 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article