Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      La regulación mecánica de la estructura ósea: estudio multidisciplinario Translated title: Mechanical regulation of bone structure: a multidisciplinary stud

      rapid-communication

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Osteocyte-driven bone remodeling.

          Osteocytes, the most abundant cells in bone, have been long postulated to detect and respond to mechanical and hormonal stimuli and to coordinate the function of osteoblasts and osteoclasts. The discovery that the inhibitor of bone formation sclerostin is primarily expressed in osteocytes in bone and downregulated by anabolic stimuli provided a mechanism by which osteocytes influence the activity of osteoblasts. Advances of the last few years provided experimental evidence demonstrating that osteocytes also participate in the recruitment of osteoclasts and the initiation of bone remodeling. Apoptotic osteocytes trigger yet-to-be-identified signals that attract osteoclast precursors to specific areas of bone, which in turn differentiate to mature, bone-resorbing osteoclasts. Osteocytes are also the source of molecules that regulate the generation and activity of osteoclasts, such as OPG and RANKL; and genetic manipulations of the mouse genome leading to loss or gain of function or to altered expression of either molecule in osteocytes markedly affect bone resorption. This review highlights these investigations and discusses how the novel concept of osteocyte-driven bone resorption and formation impacts our understanding of the mechanisms by which current therapies control bone remodeling.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Mechanical strain and bone cell function: a review.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The "muscle-bone unit" in children and adolescents: a 2000 overview.

              In former views hormones, calcium, vitamin D and other humoral and nonmechanical agents dominated control of postnatal bone strength (and "mass") in children and adolescents. However later evidence that led to the Utah paradigm of skeletal physiology revealed that this control depends strongly on the largest mechanical loads on bones. Trauma excepted, muscles cause the largest loads and the largest bone strains, and these strains help to control the biological mechanisms that determine whole-bone strength. That makes the strength of children's load-bearing bones depend strongly on growing muscle strength and how bones respond to it. Most hormones and other nonmechanical agents that affect bone strength can help or hinder that "bone strength-muscle strength" relationship but cannot replace it. In addition some agents long thought to exert bone effects by acting directly on bone cells, affect muscle strength too. In that way they could affect bone strength indirectly. Such agents include growth hormone, adrenalcorticosteroid analogs, androgens, calcium, genes, vitamin D and its metabolites, etc. Thus bone and muscle do form a kind of operational unit. It is part of the Utah paradigm that supplements earlier views with later evidence and concepts. The paradigm explains how the "bone strength-muscle strength" relationship works. This article provides an overview of that physiology, and some of its implications for pediatric endocrinologists.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                siic
                Salud(i)Ciencia
                Salud(i)Ciencia
                Sociedad Iberoamericana de Informaciòn cientìfica (Ciudad autonoma de Buenos Aires, , Argentina )
                1667-8682
                1667-8990
                August 2018
                : 23
                : 2
                : 175-178
                Article
                S1667-89902018000300017
                ec925295-5c21-44b3-8a7e-d47f5b8c0e3c

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 20, Pages: 4
                Product

                SciELO Argentina

                Categories
                Red científica iberoamericana

                Comments

                Comment on this article