Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ribosomal RNA-based epitranscriptomic regulation of chondrocyte translation and proteome in osteoarthritis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteoarthritis-related cartilage extracellular matrix remodeling is dependent on changes in chondrocyte protein expression. Yet, the role of ribosomes in chondrocyte translation regulation is unknown. In this exploratory study, we investigated ribosomal RNA (rRNA) epitranscriptomic-based ribosome heterogeneity in human articular chondrocytes and its relevance for osteoarthritis.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          The Protein Data Bank.

          The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Improved vectors and genome-wide libraries for CRISPR screening.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-scale CRISPR-Cas9 knockout screening in human cells.

              The simplicity of programming the CRISPR (clustered regularly interspaced short palindromic repeats)-associated nuclease Cas9 to modify specific genomic loci suggests a new way to interrogate gene function on a genome-wide scale. We show that lentiviral delivery of a genome-scale CRISPR-Cas9 knockout (GeCKO) library targeting 18,080 genes with 64,751 unique guide sequences enables both negative and positive selection screening in human cells. First, we used the GeCKO library to identify genes essential for cell viability in cancer and pluripotent stem cells. Next, in a melanoma model, we screened for genes whose loss is involved in resistance to vemurafenib, a therapeutic RAF inhibitor. Our highest-ranking candidates include previously validated genes NF1 and MED12, as well as novel hits NF2, CUL3, TADA2B, and TADA1. We observe a high level of consistency between independent guide RNAs targeting the same gene and a high rate of hit confirmation, demonstrating the promise of genome-scale screening with Cas9.
                Bookmark

                Author and article information

                Contributors
                Journal
                Osteoarthritis and Cartilage
                Osteoarthritis and Cartilage
                Elsevier BV
                10634584
                March 2023
                March 2023
                : 31
                : 3
                : 374-385
                Article
                10.1016/j.joca.2022.12.010
                36621590
                4432f83d-9602-4359-9eea-c4f44b3b5dae
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article