49
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Self-Setting Calcium Orthophosphate Formulations

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are bioactive and biodegradable grafting bioceramics in the form of a powder and a liquid. After mixing, both phases form pastes, which set and harden forming either a non-stoichiometric calcium deficient hydroxyapatite or brushite. Since both of them are remarkably biocompartible, bioresorbable and osteoconductive, self-setting calcium orthophosphate formulations appear to be promising bioceramics for bone grafting. Furthermore, such formulations possess excellent molding capabilities, easy manipulation and nearly perfect adaptation to the complex shapes of bone defects, followed by gradual bioresorption and new bone formation. In addition, reinforced formulations have been introduced, which might be described as calcium orthophosphate concretes. The discovery of self-setting properties opened up a new era in the medical application of calcium orthophosphates and many commercial trademarks have been introduced as a result. Currently such formulations are widely used as synthetic bone grafts, with several advantages, such as pourability and injectability. Moreover, their low-temperature setting reactions and intrinsic porosity allow loading by drugs, biomolecules and even cells for tissue engineering purposes. In this review, an insight into the self-setting calcium orthophosphate formulations, as excellent bioceramics suitable for both dental and bone grafting applications, has been provided.

          Related collections

          Most cited references828

          • Record: found
          • Abstract: found
          • Article: not found

          Therapeutic approaches to bone diseases.

          The strength and integrity of our bones depends on maintaining a delicate balance between bone resorption by osteoclasts and bone formation by osteoblasts. As we age or as a result of disease, this delicate balancing act becomes tipped in favor of osteoclasts so that bone resorption exceeds bone formation, rendering bones brittle and prone to fracture. A better understanding of the biology of osteoclasts and osteoblasts is providing opportunities for developing therapeutics to treat diseases of bone. Drugs that inhibit the formation or activity of osteoclasts are valuable for treating osteoporosis, Paget's disease, and inflammation of bone associated with rheumatoid arthritis or periodontal disease. Far less attention has been paid to promoting bone formation with, for example, growth factors or hormones, an approach that would be a valuable adjunct therapy for patients receiving inhibitors of bone resorption.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Calcium phosphate cements as drug delivery materials.

            Calcium phosphate cements are used as synthetic bone grafts, with several advantages, such as their osteoconductivity and injectability. Moreover, their low-temperature setting reaction and intrinsic porosity allow for the incorporation of drugs and active principles in the material. It is the aim of the present work to: a) provide an overview of the different approaches taken in the application of calcium phosphate cements for drug delivery in the skeletal system, and b) identify the most significant achievements. The drugs or active principles associated to calcium phosphate cements are classified in three groups, i) low molecular weight drugs; ii) high molecular weight biomolecules; and iii) ions. Copyright © 2012 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Self-Healing in Cementitious Materials—A Review

              Concrete is very sensitive to crack formation. As wide cracks endanger the durability, repair may be required. However, these repair works raise the life-cycle cost of concrete as they are labor intensive and because the structure becomes in disuse during repair. In 1994, C. Dry was the first who proposed the intentional introduction of self-healing properties in concrete. In the following years, several researchers started to investigate this topic. The goal of this review is to provide an in-depth comparison of the different self-healing approaches which are available today. Among these approaches, some are aimed at improving the natural mechanism of autogenous crack healing, while others are aimed at modifying concrete by embedding capsules with suitable healing agents so that cracks heal in a completely autonomous way after they appear. In this review, special attention is paid to the types of healing agents and capsules used. In addition, the various methodologies have been evaluated based on the trigger mechanism used and attention has been paid to the properties regained due to self-healing.
                Bookmark

                Author and article information

                Journal
                J Funct Biomater
                J Funct Biomater
                jfb
                Journal of Functional Biomaterials
                MDPI
                2079-4983
                12 November 2013
                December 2013
                : 4
                : 4
                : 209-311
                Affiliations
                Kudrinskaja sq. 1-155, Moscow 123242, Russia; E-Mail: sedorozhkin@ 123456yandex.ru ; Tel. +7-499-255-4460
                Article
                jfb-04-00209
                10.3390/jfb4040209
                4030932
                24956191
                eca33850-fe31-4bed-9607-a19ff64fd122
                © 2013 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 10 September 2013
                : 18 October 2013
                : 21 October 2013
                Categories
                Review

                calcium orthophosphates,hydroxyapatite,self-setting,self-hardening,cements,concretes,bioceramics,bone grafts,scaffolds,tissue engineering

                Comments

                Comment on this article