3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Opinion: The scientific and community-building roles of the Geoengineering Model Intercomparison Project (GeoMIP) – past, present, and future

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. The Geoengineering Model Intercomparison Project (GeoMIP) is a coordinating framework, started in 2010, that includes a series of standardized climate model experiments aimed at understanding the physical processes and projected impacts of solar geoengineering. Numerous experiments have been conducted, and numerous more have been proposed as “test-bed” experiments, spanning a variety of geoengineering techniques aimed at modifying the planetary radiation budget: stratospheric aerosol injection, marine cloud brightening, surface albedo modification, cirrus cloud thinning, and sunshade mirrors. To date, more than 100 studies have been published that used results from GeoMIP simulations. Here we provide a critical assessment of GeoMIP and its experiments. We discuss its successes and missed opportunities, for instance in terms of which experiments elicited more interest from the scientific community and which did not, and the potential reasons why that happened. We also discuss the knowledge that GeoMIP has contributed to the field of geoengineering research and climate science as a whole: what have we learned in terms of intermodel differences, robustness of the projected outcomes for specific geoengineering methods, and future areas of model development that would be necessary in the future? We also offer multiple examples of cases where GeoMIP experiments were fundamental for international assessments of climate change. Finally, we provide a series of recommendations, regarding both future experiments and more general activities, with the goal of continuously deepening our understanding of the effects of potential geoengineering approaches and reducing uncertainties in climate outcomes, important for assessing wider impacts on societies and ecosystems. In doing so, we refine the purpose of GeoMIP and outline a series of criteria whereby GeoMIP can best serve its participants, stakeholders, and the broader science community.

          Related collections

          Most cited references173

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization

          By coordinating the design and distribution of global climate model simulations of the past, current, and future climate, the Coupled Model Intercomparison Project (CMIP) has become one of the foundational elements of climate science. However, the need to address an ever-expanding range of scientific questions arising from more and more research communities has made it necessary to revise the organization of CMIP. After a long and wide community consultation, a new and more federated structure has been put in place. It consists of three major elements: (1) a handful of common experiments, the DECK (Diagnostic, Evaluation and Characterization of Klima) and CMIP historical simulations (1850–near present) that will maintain continuity and help document basic characteristics of models across different phases of CMIP; (2) common standards, coordination, infrastructure, and documentation that will facilitate the distribution of model outputs and the characterization of the model ensemble; and (3) an ensemble of CMIP-Endorsed Model Intercomparison Projects (MIPs) that will be specific to a particular phase of CMIP (now CMIP6) and that will build on the DECK and CMIP historical simulations to address a large range of specific questions and fill the scientific gaps of the previous CMIP phases. The DECK and CMIP historical simulations, together with the use of CMIP data standards, will be the entry cards for models participating in CMIP. Participation in CMIP6-Endorsed MIPs by individual modelling groups will be at their own discretion and will depend on their scientific interests and priorities. With the Grand Science Challenges of the World Climate Research Programme (WCRP) as its scientific backdrop, CMIP6 will address three broad questions: – How does the Earth system respond to forcing? – What are the origins and consequences of systematic model biases? – How can we assess future climate changes given internal climate variability, predictability, and uncertainties in scenarios? This CMIP6 overview paper presents the background and rationale for the new structure of CMIP, provides a detailed description of the DECK and CMIP6 historical simulations, and includes a brief introduction to the 21 CMIP6-Endorsed MIPs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6

            Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017–2018 time frame, and output from the climate model projections made available and analyses performed over the 2018–2020 period.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Paris Agreement climate proposals need a boost to keep warming well below 2 °C.

              The Paris climate agreement aims at holding global warming to well below 2 degrees Celsius and to "pursue efforts" to limit it to 1.5 degrees Celsius. To accomplish this, countries have submitted Intended Nationally Determined Contributions (INDCs) outlining their post-2020 climate action. Here we assess the effect of current INDCs on reducing aggregate greenhouse gas emissions, its implications for achieving the temperature objective of the Paris climate agreement, and potential options for overachievement. The INDCs collectively lower greenhouse gas emissions compared to where current policies stand, but still imply a median warming of 2.6-3.1 degrees Celsius by 2100. More can be achieved, because the agreement stipulates that targets for reducing greenhouse gas emissions are strengthened over time, both in ambition and scope. Substantial enhancement or over-delivery on current INDCs by additional national, sub-national and non-state actions is required to maintain a reasonable chance of meeting the target of keeping warming well below 2 degrees Celsius.
                Bookmark

                Author and article information

                Contributors
                Journal
                Atmospheric Chemistry and Physics
                Atmos. Chem. Phys.
                Copernicus GmbH
                1680-7324
                2023
                May 05 2023
                : 23
                : 9
                : 5149-5176
                Article
                10.5194/acp-23-5149-2023
                ecb4554a-c179-4ff1-ae48-4bc12b716c83
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article