36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome Profile Analysis from Different Sex Types of Ginkgo biloba L.

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In plants, sex determination is a comprehensive process of correlated events, which involves genes that are differentially and/or specifically expressed in distinct developmental phases. Exploring gene expression profiles from different sex types will contribute to fully understanding sex determination in plants. In this study, we conducted RNA-sequencing of female and male buds (FB and MB) as well as ovulate strobilus and staminate strobilus (OS and SS) of Ginkgo biloba to gain insights into the genes potentially related to sex determination in this species. Approximately 60 Gb of clean reads were obtained from eight cDNA libraries. De novo assembly of the clean reads generated 108,307 unigenes with an average length of 796 bp. Among these unigenes, 51,953 (47.97%) had at least one significant match with a gene sequence in the public databases searched. A total of 4709 and 9802 differentially expressed genes (DEGs) were identified in MB vs. FB and SS vs. OS, respectively. Genes involved in plant hormone signal and transduction as well as those encoding DNA methyltransferase were found to be differentially expressed between different sex types. Their potential roles in sex determination of G. biloba were discussed. Pistil-related genes were expressed in male buds while anther-specific genes were identified in female buds, suggesting that dioecism in G. biloba was resulted from the selective arrest of reproductive primordia. High correlation of expression level was found between the RNA-Seq and quantitative real-time PCR results. The transcriptome resources that we generated allowed us to characterize gene expression profiles and examine differential expression profiles, which provided foundations for identifying functional genes associated with sex determination in G. biloba.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins.

          Type 2C protein phosphatases (PP2Cs) are vitally involved in abscisic acid (ABA) signaling. Here, we show that a synthetic growth inhibitor called pyrabactin functions as a selective ABA agonist. Pyrabactin acts through PYRABACTIN RESISTANCE 1 (PYR1), the founding member of a family of START proteins called PYR/PYLs, which are necessary for both pyrabactin and ABA signaling in vivo. We show that ABA binds to PYR1, which in turn binds to and inhibits PP2Cs. We conclude that PYR/PYLs are ABA receptors functioning at the apex of a negative regulatory pathway that controls ABA signaling by inhibiting PP2Cs. Our results illustrate the power of the chemical genetic approach for sidestepping genetic redundancy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1.

            Response to the gaseous plant hormone ethylene in Arabidopsis requires the EIN3/EIL family of nuclear proteins. The biochemical function(s) of EIN3/EIL proteins, however, has remained unknown. In this study, we show that EIN3 and EILs comprise a family of novel sequence-specific DNA-binding proteins that regulate gene expression by binding directly to a primary ethylene response element (PERE) related to the tomato E4-element. Moreover, we identified an immediate target of EIN3, ETHYLENE-RESPONSE-FACTOR1 (ERF1), which contains this element in its promoter. EIN3 is necessary and sufficient for ERF1 expression, and, like EIN3-overexpression in transgenic plants, constitutive expression of ERF1 results in the activation of a variety of ethylene response genes and phenotypes. Evidence is also provided that ERF1 acts downstream of EIN3 and all other components of the ethylene signaling pathway. The results demonstrate that the nuclear proteins EIN3 and ERF1 act sequentially in a cascade of transcriptional regulation initiated by ethylene gas.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gene regulation by transcription factors and microRNAs.

              The properties of a cell are determined by the genetic information encoded in its genome. Understanding how such information is differentially and dynamically retrieved to define distinct cell types and cellular states is a major challenge facing molecular biology. Gene regulatory factors that control the expression of genomic information come in a variety of flavors, with transcription factors and microRNAs representing the most numerous gene regulatory factors in multicellular genomes. Here, I review common principles of transcription factor- and microRNA-mediated gene regulatory events and discuss conceptual differences in how these factors control gene expression.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                16 June 2016
                2016
                : 7
                : 871
                Affiliations
                Key Laboratory of Sivilculture in Shandong Province, College of Forestry, Shandong Agriculture University Tai'an, China
                Author notes

                Edited by: Daniel Pinero, Universidad Nacional Autónoma de México, Mexico

                Reviewed by: Stefan De Folter, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico; Rishi Aryal, Western Sydney University, Australia

                *Correspondence: Shiyan Xing xingsy@ 123456sdau.edu.cn

                This article was submitted to Plant Genetics and Genomics, a section of the journal Frontiers in Plant Science

                †These authors have contributed equally to this work.

                Article
                10.3389/fpls.2016.00871
                4910463
                27379148
                ecde6795-4450-4ca9-819e-48d78b50ab63
                Copyright © 2016 Du, Sang, Liu, Xing, Li, Tang and Sun.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 January 2016
                : 02 June 2016
                Page count
                Figures: 5, Tables: 2, Equations: 0, References: 74, Pages: 10, Words: 6828
                Funding
                Funded by: China Postdoctoral Science Foundation 10.13039/501100002858
                Award ID: 2015M582124
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                ginkgo biloba,sex determination,rna-sequencing,plant hormone signal and transduction,dna methyltransferase,hydroxysteroid dehydrogenase

                Comments

                Comment on this article