28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recovering Facial Reflectance and Geometry from Multi-view Images

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          While the problem of estimating shapes and diffuse reflectances of human faces from images has been extensively studied, there is relatively less work done on recovering the specular albedo. This paper presents a lightweight solution for inferring photorealistic facial reflectance and geometry. Our system processes video streams from two views of a subject, and outputs two reflectance maps for diffuse and specular albedos, as well as a vector map of surface normals. A model-based optimization approach is used, consisting of the three stages of multi-view face model fitting, facial reflectance inference and facial geometry refinement. Our approach is based on a novel formulation built upon the 3D morphable model (3DMM) for representing 3D textured faces in conjunction with the Blinn-Phong reflection model. It has the advantage of requiring only a simple setup with two video streams, and is able to exploit the interaction between the diffuse and specular reflections across multiple views as well as time frames. As a result, the method is able to reliably recover high-fidelity facial reflectance and geometry, which facilitates various applications such as generating photorealistic facial images under new viewpoints or illumination conditions.

          Related collections

          Author and article information

          Journal
          27 November 2019
          Article
          1911.11999
          ececbe45-6f5c-445d-8170-9454f6bb4ff9

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          cs.CV cs.GR

          Computer vision & Pattern recognition,Graphics & Multimedia design
          Computer vision & Pattern recognition, Graphics & Multimedia design

          Comments

          Comment on this article