Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cavity optomechanics in a levitated helium drop

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Cavity Optomechanics

          We review the field of cavity optomechanics, which explores the interaction between electromagnetic radiation and nano- or micromechanical motion. This review covers the basics of optical cavities and mechanical resonators, their mutual optomechanical interaction mediated by the radiation pressure force, the large variety of experimental systems which exhibit this interaction, optical measurements of mechanical motion, dynamical backaction amplification and cooling, nonlinear dynamics, multimode optomechanics, and proposals for future cavity quantum optomechanics experiments. In addition, we describe the perspectives for fundamental quantum physics and for possible applications of optomechanical devices.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            On the Capillary Phenomena of Jets

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Introduction to Quantum Noise, Measurement and Amplification

              The topic of quantum noise has become extremely timely due to the rise of quantum information physics and the resulting interchange of ideas between the condensed matter and AMO/quantum optics communities. This review gives a pedagogical introduction to the physics of quantum noise and its connections to quantum measurement and quantum amplification. After introducing quantum noise spectra and methods for their detection, we describe the basics of weak continuous measurements. Particular attention is given to treating the standard quantum limit on linear amplifiers and position detectors using a general linear-response framework. We show how this approach relates to the standard Haus-Caves quantum limit for a bosonic amplifier known in quantum optics, and illustrate its application for the case of electrical circuits, including mesoscopic detectors and resonant cavity detectors.
                Bookmark

                Author and article information

                Journal
                PLRAAN
                Physical Review A
                Phys. Rev. A
                American Physical Society (APS)
                2469-9926
                2469-9934
                December 2017
                December 29 2017
                : 96
                : 6
                Article
                10.1103/PhysRevA.96.063842
                ed0f00ff-6206-4f37-b23f-264bc8853efa
                © 2017

                https://link.aps.org/licenses/aps-default-license

                https://link.aps.org/licenses/aps-default-accepted-manuscript-license

                History

                Comments

                Comment on this article