6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Real-world data: a brief review of the methods, applications, challenges and opportunities

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The increased adoption of the internet, social media, wearable devices, e-health services, and other technology-driven services in medicine and healthcare has led to the rapid generation of various types of digital data, providing a valuable data source beyond the confines of traditional clinical trials, epidemiological studies, and lab-based experiments.

          Methods

          We provide a brief overview on the type and sources of real-world data and the common models and approaches to utilize and analyze real-world data. We discuss the challenges and opportunities of using real-world data for evidence-based decision making This review does not aim to be comprehensive or cover all aspects of the intriguing topic on RWD (from both the research and practical perspectives) but serves as a primer and provides useful sources for readers who interested in this topic.

          Results and Conclusions

          Real-world hold great potential for generating real-world evidence for designing and conducting confirmatory trials and answering questions that may not be addressed otherwise. The voluminosity and complexity of real-world data also call for development of more appropriate, sophisticated, and innovative data processing and analysis techniques while maintaining scientific rigor in research findings, and attentions to data ethics to harness the power of real-world data.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          A survey on deep learning in medical image analysis

          Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks. Concise overviews are provided of studies per application area: neuro, retinal, pulmonary, digital pathology, breast, cardiac, abdominal, musculoskeletal. We end with a summary of the current state-of-the-art, a critical discussion of open challenges and directions for future research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Deep Learning in Medical Image Analysis

            This review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not Available.

              Ideally, questions about comparative effectiveness or safety would be answered using an appropriately designed and conducted randomized experiment. When we cannot conduct a randomized experiment, we analyze observational data. Causal inference from large observational databases (big data) can be viewed as an attempt to emulate a randomized experiment-the target experiment or target trial-that would answer the question of interest. When the goal is to guide decisions among several strategies, causal analyses of observational data need to be evaluated with respect to how well they emulate a particular target trial. We outline a framework for comparative effectiveness research using big data that makes the target trial explicit. This framework channels counterfactual theory for comparing the effects of sustained treatment strategies, organizes analytic approaches, provides a structured process for the criticism of observational studies, and helps avoid common methodologic pitfalls.
                Bookmark

                Author and article information

                Contributors
                fliu2@nd.edu
                Journal
                BMC Med Res Methodol
                BMC Med Res Methodol
                BMC Medical Research Methodology
                BioMed Central (London )
                1471-2288
                5 November 2022
                5 November 2022
                2022
                : 22
                : 287
                Affiliations
                [1 ]GRID grid.131063.6, ISNI 0000 0001 2168 0066, Department of Applied and Computational Mathematics and Statistics, , University of Notre Dame, ; 46530 Notre Dame, IN USA
                [2 ]GRID grid.15823.3d, ISNI 0000 0004 0622 2843, School of Health Sciences and Education, Harokopio University, ; Athens, Greece
                Author information
                http://orcid.org/0000-0003-3028-5927
                Article
                1768
                10.1186/s12874-022-01768-6
                9636688
                36335315
                ed1c1e12-738c-4595-a008-57351c3605a6
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 8 April 2022
                : 22 October 2022
                Categories
                Review
                Custom metadata
                © The Author(s) 2022

                Medicine
                real-world data (rwd),real-world evidence (rwe),electronic health records,machine learning,artificial intelligence,causal inference

                Comments

                Comment on this article