7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Randomized Trial—PrEscription of intraDialytic exercise to improve quAlity of Life in Patients Receiving Hemodialysis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Whether clinically implementable exercise interventions in people receiving hemodialysis (HD) therapy improve health-related quality of life (HRQoL) remains unknown. The PrEscription of intraDialytic exercise to improve quAlity of Life (PEDAL) study evaluated the clinical benefit and cost-effectiveness of a 6-month intradialytic exercise program.

          Methods

          In a multicenter, single-blinded, randomized, controlled trial, people receiving HD were randomly assigned to (i) intradialytic exercise training (exercise intervention group [EX]) and (ii) usual care (control group [CON]). Primary outcome was change in Kidney Disease Quality of Life Short-Form Physical Component Summary (KDQOL-SF 1.3 PCS) from baseline to 6 months. Cost-effectiveness was determined using health economic analysis; physiological impairment was evaluated by peak oxygen uptake; and harms were recorded.

          Results

          We randomized 379 participants; 335 and 243 patients (EX n = 127; CON n = 116) completed baseline and 6-month assessments, respectively. Mean difference in change PCS from baseline to 6 months between EX and CON was 2.4 (95% confidence interval [CI]: −0.1 to 4.8) arbitrary units ( P = 0.055); no improvements were observed in peak oxygen uptake or secondary outcome measures. Participants in the intervention group had poor compliance (47%) and poor adherence (18%) to the exercise prescription. Cost of delivering intervention ranged from US$598 to US$1092 per participant per year. The number of participants with harms was similar between EX ( n = 69) and CON ( n = 56). A primary limitation was the lack of an attention CON. Many patients also withdrew from the study or were too unwell to complete all physiological outcome assessments.

          Conclusions

          A 6-month intradialytic aerobic exercise program was not clinically beneficial in improving HRQoL as delivered to this cohort of deconditioned patients on HD.

          Graphical abstract

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L)

          Purpose This article introduces the new 5-level EQ-5D (EQ-5D-5L) health status measure. Methods EQ-5D currently measures health using three levels of severity in five dimensions. A EuroQol Group task force was established to find ways of improving the instrument’s sensitivity and reducing ceiling effects by increasing the number of severity levels. The study was performed in the United Kingdom and Spain. Severity labels for 5 levels in each dimension were identified using response scaling. Focus groups were used to investigate the face and content validity of the new versions, including hypothetical health states generated from those versions. Results Selecting labels at approximately the 25th, 50th, and 75th centiles produced two alternative 5-level versions. Focus group work showed a slight preference for the wording ‘slight-moderate-severe’ problems, with anchors of ‘no problems’ and ‘unable to do’ in the EQ-5D functional dimensions. Similar wording was used in the Pain/Discomfort and Anxiety/Depression dimensions. Hypothetical health states were well understood though participants stressed the need for the internal coherence of health states. Conclusions A 5-level version of the EQ-5D has been developed by the EuroQol Group. Further testing is required to determine whether the new version improves sensitivity and reduces ceiling effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

            Summary Background Health system planning requires careful assessment of chronic kidney disease (CKD) epidemiology, but data for morbidity and mortality of this disease are scarce or non-existent in many countries. We estimated the global, regional, and national burden of CKD, as well as the burden of cardiovascular disease and gout attributable to impaired kidney function, for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. We use the term CKD to refer to the morbidity and mortality that can be directly attributed to all stages of CKD, and we use the term impaired kidney function to refer to the additional risk of CKD from cardiovascular disease and gout. Methods The main data sources we used were published literature, vital registration systems, end-stage kidney disease registries, and household surveys. Estimates of CKD burden were produced using a Cause of Death Ensemble model and a Bayesian meta-regression analytical tool, and included incidence, prevalence, years lived with disability, mortality, years of life lost, and disability-adjusted life-years (DALYs). A comparative risk assessment approach was used to estimate the proportion of cardiovascular diseases and gout burden attributable to impaired kidney function. Findings Globally, in 2017, 1·2 million (95% uncertainty interval [UI] 1·2 to 1·3) people died from CKD. The global all-age mortality rate from CKD increased 41·5% (95% UI 35·2 to 46·5) between 1990 and 2017, although there was no significant change in the age-standardised mortality rate (2·8%, −1·5 to 6·3). In 2017, 697·5 million (95% UI 649·2 to 752·0) cases of all-stage CKD were recorded, for a global prevalence of 9·1% (8·5 to 9·8). The global all-age prevalence of CKD increased 29·3% (95% UI 26·4 to 32·6) since 1990, whereas the age-standardised prevalence remained stable (1·2%, −1·1 to 3·5). CKD resulted in 35·8 million (95% UI 33·7 to 38·0) DALYs in 2017, with diabetic nephropathy accounting for almost a third of DALYs. Most of the burden of CKD was concentrated in the three lowest quintiles of Socio-demographic Index (SDI). In several regions, particularly Oceania, sub-Saharan Africa, and Latin America, the burden of CKD was much higher than expected for the level of development, whereas the disease burden in western, eastern, and central sub-Saharan Africa, east Asia, south Asia, central and eastern Europe, Australasia, and western Europe was lower than expected. 1·4 million (95% UI 1·2 to 1·6) cardiovascular disease-related deaths and 25·3 million (22·2 to 28·9) cardiovascular disease DALYs were attributable to impaired kidney function. Interpretation Kidney disease has a major effect on global health, both as a direct cause of global morbidity and mortality and as an important risk factor for cardiovascular disease. CKD is largely preventable and treatable and deserves greater attention in global health policy decision making, particularly in locations with low and middle SDI. Funding Bill & Melinda Gates Foundation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review

              Background The International Physical Activity Questionnaire - Short Form (IPAQ-SF) has been recommended as a cost-effective method to assess physical activity. Several studies validating the IPAQ-SF have been conducted with differing results, but no systematic review of these studies has been reported. Methods The keywords "IPAQ", "validation", and "validity" were searched in PubMed and Scopus. Studies published in English that validated the IPAQ-SF against an objective physical activity measuring device, doubly labeled water, or an objective fitness measure were included. Results Twenty-three validation studies were included in this review. There was a great deal of variability in the methods used across studies, but the results were largely similar. Correlations between the total physical activity level measured by the IPAQ-SF and objective standards ranged from 0.09 to 0.39; none reached the minimal acceptable standard in the literature (0.50 for objective activity measuring devices, 0.40 for fitness measures). Correlations between sections of the IPAQ-SF for vigorous activity or moderate activity level/walking and an objective standard showed even greater variability (-0.18 to 0.76), yet several reached the minimal acceptable standard. Only six studies provided comparisons between physical activity levels derived from the IPAQ-SF and those obtained from objective criterion. In most studies the IPAQ-SF overestimated physical activity level by 36 to 173 percent; one study underestimated by 28 percent. Conclusions The correlation between the IPAQ-SF and objective measures of activity or fitness in the large majority of studies was lower than the acceptable standard. Furthermore, the IPAQ-SF typically overestimated physical activity as measured by objective criterion by an average of 84 percent. Hence, the evidence to support the use of the IPAQ-SF as an indicator of relative or absolute physical activity is weak.
                Bookmark

                Author and article information

                Journal
                Kidney Int Rep
                Kidney Int Rep
                Kidney International Reports
                Elsevier
                2468-0249
                30 May 2021
                August 2021
                30 May 2021
                : 6
                : 8
                : 2159-2170
                Affiliations
                [1 ]Renal Medicine, King’s College Hospital NHS Trust, London, UK
                [2 ]School of Renal Medicine, King’s College London, London, UK
                [3 ]School of Health Sciences, Queen Margaret University, Edinburgh, UK
                [4 ]School of Sport, Health and Exercise Sciences, Bangor University, Wales, UK
                [5 ]Renal Medicine, Hull University Teaching Hospitals NHS Trust, Hull, UK
                [6 ]Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
                [7 ]Renal Medicine, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
                [8 ]Renal Medicine, Lister Hospital, Stevenage, UK
                [9 ]Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
                [10 ]Renal Medicine, Salford Royal Hospital, Salford, UK
                [11 ]Renal Medicine, Glan Clwyd Hospital, Wales, UK
                [12 ]Renal Medicine, Manchester University Hospitals, Manchester, UK
                [13 ]Department of Health Sciences, University of Leicester, Leicester, UK
                [14 ]Division of Medical Sciences and Graduate Entry Medicine, University of Nottingham, Nottingham, UK
                [15 ]Renal Medicine, Queen Elizabeth University Hospital, Glasgow, UK
                [16 ]Renal Medicine, University College London, London, UK
                [17 ]The George Institute for Global Health, New South Wales, Australia
                [18 ]Renal Medicine, The Royal London Hospital, London, UK
                Author notes
                [] Correspondence: Sharlene Greenwood, Renal Medicine, King’s College Hospital NHS Trust, London, UK.
                Article
                S2468-0249(21)01217-1
                10.1016/j.ekir.2021.05.034
                8343798
                34386665
                ed241360-eed0-4357-a4c3-3743fc58469e
                © 2021 International Society of Nephrology. Published by Elsevier Inc.

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 4 May 2021
                : 24 May 2021
                Categories
                Clinical Research

                chronic kidney disease,physical activity,physical function,rehabilitation

                Comments

                Comment on this article

                scite_

                Similar content242

                Cited by10

                Most referenced authors811