167
views
0
recommends
+1 Recommend
0 collections
    11
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Open Field Release of Genetically Engineered Sterile Male Aedes aegypti in Malaysia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Dengue is the most important mosquito-borne viral disease. In the absence of specific drugs or vaccines, control focuses on suppressing the principal mosquito vector, Aedes aegypti, yet current methods have not proven adequate to control the disease. New methods are therefore urgently needed, for example genetics-based sterile-male-release methods. However, this requires that lab-reared, modified mosquitoes be able to survive and disperse adequately in the field.

          Methodology/Principal Findings

          Adult male mosquitoes were released into an uninhabited forested area of Pahang, Malaysia. Their survival and dispersal was assessed by use of a network of traps. Two strains were used, an engineered ‘genetically sterile’ (OX513A) and a wild-type laboratory strain, to give both absolute and relative data about the performance of the modified mosquitoes. The two strains had similar maximum dispersal distances (220 m), but mean distance travelled of the OX513A strain was lower (52 vs. 100 m). Life expectancy was similar (2.0 vs. 2.2 days). Recapture rates were high for both strains, possibly because of the uninhabited nature of the site.

          Conclusions/Significance

          After extensive contained studies and regulatory scrutiny, a field release of engineered mosquitoes was safely and successfully conducted in Malaysia. The engineered strain showed similar field longevity to an unmodified counterpart, though in this setting dispersal was reduced relative to the unmodified strain. These data are encouraging for the future testing and implementation of genetic control strategies and will help guide future field use of this and other engineered strains.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Dispersal of the dengue vector Aedes aegypti within and between rural communities.

          Knowledge of mosquito dispersal is critical for vector-borne disease control and prevention strategies and for understanding population structure and pathogen dissemination. We determined Aedes aegypti flight range and dispersal patterns from 21 mark-release-recapture experiments conducted over 11 years (1991-2002) in Puerto Rico and Thailand. Dispersal was compared by release location, sex, age, season, and village. For all experiments, the majority of mosquitoes were collected from their release house or adjacent house. Inter-village movement was detected rarely, with a few mosquitoes moving a maximum of 512 meters from one Thai village to the next. Average dispersal distances were similar for males and females and females released indoors versus outdoors. The movement of Ae. aegypti was not influenced by season or age, but differed by village. Results demonstrate that adult Ae. aegypti disperse relatively short distances, suggesting that people rather than mosquitoes are the primary mode of dengue virus dissemination within and among communities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insect population control using a dominant, repressible, lethal genetic system.

            A major modification to the sterile insect technique is described, in which transgenic insects homozygous for a dominant, repressible, female-specific lethal gene system are used. We demonstrate two methods that give the required genetic characteristics in an otherwise wild-type genetic background. The first system uses a sex-specific promoter or enhancer to drive the expression of a repressible transcription factor, which in turn controls the expression of a toxic gene product. The second system uses non-sex-specific expression of the repressible transcription factor to regulate a selectively lethal gene product. Both methods work efficiently in Drosophila melanogaster, and we expect these principles to be widely applicable to more economically important organisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Field performance of engineered male mosquitoes.

              Dengue is the most medically important arthropod-borne viral disease, with 50-100 million cases reported annually worldwide. As no licensed vaccine or dedicated therapy exists for dengue, the most promising strategies to control the disease involve targeting the predominant mosquito vector, Aedes aegypti. However, the current methods to do this are inadequate. Various approaches involving genetically engineered mosquitoes have been proposed, including the release of transgenic sterile males. However, the ability of laboratory-reared, engineered male mosquitoes to effectively compete with wild males in terms of finding and mating with wild females, which is critical to the success of these strategies, has remained untested. We report data from the first open-field trial involving a strain of engineered mosquito. We demonstrated that genetically modified male mosquitoes, released across 10 hectares for a 4-week period, mated successfully with wild females and fertilized their eggs. These findings suggest the feasibility of this technology to control dengue by suppressing field populations of A. aegypti.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                27 August 2012
                31 August 2012
                : 7
                : 8
                : e42771
                Affiliations
                [1 ]Oxitec Sendirian Berhad, Kuala Lumpur, Wilayah Persekutuan, Malaysia
                [2 ]Oxitec Limited, Oxford, Oxfordshire, United Kingdom
                [3 ]Medical Entomology Unit, Institute for Medical Research, Kuala Lumpur, Wilayah Persekutuan, Malaysia
                [4 ]Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Wilayah Persekutuan, Malaysia
                [5 ]Department of Zoology, University of Oxford, Oxford, Oxfordshire, United Kingdom
                University of Crete, Greece
                Author notes

                Competing Interests: Authors affiliated to Oxitec Ltd. or Oxitec Sdn Bhd are past or present staff or students of Oxitec Ltd. or Oxitec Sdn Bhd. These authors also have, or had, shares or share options in Oxitec Ltd. The genetically modified line of Aedes aegypti OX513A used in the study is a product of Oxitec Ltd. and contains patented technology owned by Oxitec Ltd. and Oxford University. Specific details will be made available upon request. This does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials, as detailed online in the guide for authors. All other authors declare no conflicting interests.

                Conceived and designed the experiments: RL AM. Performed the experiments: RL AM NR LKW WHM TGN SRAA S. Salman S. Subramaniam ON NHAT CA SMM RSL S. Scaife. Analyzed the data: RL. Wrote the paper: RL AM LA CB DN LHL NWA SM. Egg production and development of the strain in the UK: NN PG GL DN. Regulatory: CB LA AM DN SSV LHL NWA SM.

                Article
                PONE-D-12-12316
                10.1371/journal.pone.0042771
                3428326
                22970102
                ed70bc23-e250-4fbb-869b-c36f5c4b8019
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 April 2012
                : 11 July 2012
                Page count
                Pages: 9
                Funding
                This study was supported by a grant from the National Institutes of Health from the Ministry of Health, Malaysia (code: JPP-IMR 06-053). Oxitec Ltd. provided salary and other support for the research program of those authors employed by the company (as noted in the author list). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biotechnology
                Bioengineering
                Biological Systems Engineering
                Genetic Engineering
                Genetically Modified Organisms
                Transgenics
                Microbiology
                Vector Biology
                Mosquitoes
                Zoology
                Entomology
                Medicine
                Infectious Diseases
                Vectors and Hosts
                Mosquitoes

                Uncategorized
                Uncategorized

                Comments

                Comment on this article