Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The role of aperiodic spectral slope in event-related potentials and cognition among children with and without attention deficit hyperactivity disorder

      1 , 2 , 1 , 3
      Journal of Neurophysiology
      American Physiological Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study constitutes the first investigation of associations between aperiodic spectral slope and three aspects of neurocognition: event-related potential (ERP) amplitudes, cognitive load, and task performance. We find that background oscillatory activity is dynamic, shifting in anticipation of varying levels of task relevance and in response to increasing cognitive load. Moreover, we report that aperiodic activity and ERPs constitute distinct neurophysiological processes. Children with attention deficit hyperactivity disorder (ADHD) show reduced aperiodic dynamics in addition to attenuated ERP amplitudes.

          Abstract

          Aperiodic spectral slope is a measure of spontaneous neural oscillatory activity that is believed to support regulation of brain responses to environmental stimuli. Compared to typically developing (TD) control participants, children with attention deficit hyperactivity disorder (ADHD) have been shown to have flatter aperiodic spectral slope at rest as well as attenuated event-related potential (ERP) amplitudes in response to environmental stimuli. A small body of research suggests that aperiodic slope may also explain differences in behavioral responses. In this study, we examine associations between prestimulus aperiodic slope, stimulus characteristics, environmental demands, and neural as well as behavioral responses to these stimuli. Furthermore, we evaluate whether ADHD diagnostic status moderates these associations. Seventy-nine children with ADHD and 27 TD school-age children completed two visual ERP experiments with predictable alternating presentations of task-relevant and task-irrelevant stimuli. Aperiodic slope was extracted from prestimulus time windows. Prestimulus aperiodic slope was steeper for the TD relative to ADHD group, driven by task-relevant rather than task-irrelevant stimuli. For both groups, the aperiodic slope was steeper during a task with lower cognitive demand and before trials in which they responded correctly. Aperiodic slope did not mediate the association between ADHD diagnosis and attenuated P300 amplitude. The aperiodic spectral slope is dynamic and changes in anticipation of varying stimulus categories to support performance. The aperiodic slope and P300 amplitude reflect distinct cognitive processes. Background neural oscillations, captured via aperiodic slope, support cognitive behavioral control and should be included in etiological models of ADHD.

          NEW & NOTEWORTHY This study constitutes the first investigation of associations between aperiodic spectral slope and three aspects of neurocognition: event-related potential (ERP) amplitudes, cognitive load, and task performance. We find that background oscillatory activity is dynamic, shifting in anticipation of varying levels of task relevance and in response to increasing cognitive load. Moreover, we report that aperiodic activity and ERPs constitute distinct neurophysiological processes. Children with attention deficit hyperactivity disorder (ADHD) show reduced aperiodic dynamics in addition to attenuated ERP amplitudes.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Updating P300: an integrative theory of P3a and P3b.

          The empirical and theoretical development of the P300 event-related brain potential (ERP) is reviewed by considering factors that contribute to its amplitude, latency, and general characteristics. The neuropsychological origins of the P3a and P3b subcomponents are detailed, and how target/standard discrimination difficulty modulates scalp topography is discussed. The neural loci of P3a and P3b generation are outlined, and a cognitive model is proffered: P3a originates from stimulus-driven frontal attention mechanisms during task processing, whereas P3b originates from temporal-parietal activity associated with attention and appears related to subsequent memory processing. Neurotransmitter actions associating P3a to frontal/dopaminergic and P3b to parietal/norepinephrine pathways are highlighted. Neuroinhibition is suggested as an overarching theoretical mechanism for P300, which is elicited when stimulus detection engages memory operations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A mechanism for cognitive dynamics: neuronal communication through neuronal coherence.

            At any one moment, many neuronal groups in our brain are active. Microelectrode recordings have characterized the activation of single neurons and fMRI has unveiled brain-wide activation patterns. Now it is time to understand how the many active neuronal groups interact with each other and how their communication is flexibly modulated to bring about our cognitive dynamics. I hypothesize that neuronal communication is mechanistically subserved by neuronal coherence. Activated neuronal groups oscillate and thereby undergo rhythmic excitability fluctuations that produce temporal windows for communication. Only coherently oscillating neuronal groups can interact effectively, because their communication windows for input and for output are open at the same times. Thus, a flexible pattern of coherence defines a flexible communication structure, which subserves our cognitive flexibility.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Parameterizing neural power spectra into periodic and aperiodic components

              Electrophysiological signals exhibit both periodic and aperiodic properties. Periodic oscillations have been linked to numerous physiological, cognitive, behavioral and disease states. Emerging evidence demonstrates that the aperiodic component has putative physiological interpretations and that it dynamically changes with age, task demands and cognitive states. Electrophysiological neural activity is typically analyzed using canonically defined frequency bands, without consideration of the aperiodic (1/f-like) component. We show that standard analytic approaches can conflate periodic parameters (center frequency, power, bandwidth) with aperiodic ones (offset, exponent), compromising physiological interpretations. To overcome these limitations, we introduce an algorithm to parameterize neural power spectra as a combination of an aperiodic component and putative periodic oscillatory peaks. This algorithm requires no a priori specification of frequency bands. We validate this algorithm on simulated data, and demonstrate how it can be used in applications ranging from analyzing age-related changes in working memory to large-scale data exploration and analysis.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of Neurophysiology
                Journal of Neurophysiology
                American Physiological Society
                0022-3077
                1522-1598
                December 01 2022
                December 01 2022
                : 128
                : 6
                : 1546-1554
                Affiliations
                [1 ]Division of Developmental Medicine, Boston Children’s Hospital, Boston, Massachusetts
                [2 ]Pediatrics, Harvard Medical School, Boston, Massachusetts
                [3 ]Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
                Article
                10.1152/jn.00295.2022
                9902214
                36382902
                edb02212-9358-44cb-90e6-c00e681dcfe2
                © 2022
                History

                Comments

                Comment on this article

                scite_

                Similar content216

                Cited by6

                Most referenced authors416